The Cosmic Box contest

a (not so) short **introduction** to the **portable particle detector** you're going to **set up** for **your** original experiment!

Why a EEE - CB ?

In the early EEE times the CB was thought for

In the efficiency of the Alice ToF MRPCs and later EEE MRPCs

 allowing several didactical measurements about Cosmic Ray

How does a scintillator work ?

A scintillator emits photons when an ionizing particle deposits energy while passing through the material

Scintillation processes are based on the **excitation-dexcitation** of electrons on hybrid orbitals, typical in organic molecules

A scintillator emits photons when an ionizing particle deposits energy while passing through the material

Scintillation processes are based on the **excitation-dexcitation** of electrons on hybrid orbitals, typical in **organic molecules**

How does a scintillator work ?

How does the light is collected ?

The surface of the scintillator is usually

painted with reflective coating

wrapped with a reflective film

Thus **10-50%** of the emitted **light is "confined"** into the scintillator volume

In average 10⁴ to 10⁵ photons are released **per cm** of scintillator, depending on

- particle energy
- particle type
- scintillating material

The Silicon Photomultiplier: a light amplifier

The Silicon Photomultiplier: a light amplifier

Coupling the SiPM to the scintillator

Coupling the SiPM to the scintillator

AMPLITUDE

Different coupling methods

1. with wavelenght shifter:

"shift" the light emitted by the scintillator to the best frequency for SiPM

2. last CB versions: both scintillator and SiPM are tuned on Near UV light

The optical grease

... for the **light coupling** between scintillator and SiPM

The SiPM on the scintillator: 2 SiPMs per scintillator tile are installed for reducing the noise (see later)

modeling clay for keeping out the light

The mylar reflective coating

Closing the scintillator

Closing the SiPM

A scintillator ready for calibration

electronics

The 2 SiPM signals are amplified and compared with a reference threshold.

A digital LVDS signal is provided by the FE electronics per each analog signal from the SiPM (single SiPM or coincidence can be selected).

The Front-End electronics

The higher the analog signal

the wider the digital signal

threshold

The FE first calibration

The scintillator + FE yields false signals (not related with particles) it's called NOISE.

The **threshold are adjusted** in order to have a **counting rate** per SiPM **higher than the expected** particle rate.

 $v_{exp} \sim 170 \ \mu/(s \ m^2) \cdot (0.15 \ m)^2 \sim 3.8 \ \mu/s$

The coincidence module: how to reduce false particle rate

 $P(A \cap B) = P(A)P(B)$ uncorrelated

spurious signals in scintillator **TOP** in $\Delta T = v1 \cdot \Delta T$ **spurious** signals in scintillator **BOT** in $\Delta T = v2 \cdot \Delta T$

where v1 and v2 are spurious signal rate per scintillator

Rate of spurious coincidences:

v(false coincidences) = $2 \cdot v1 \cdot v2 \cdot \Delta T^2 \sim 2 \cdot (10 \text{ Hz})^2 \cdot 10^{-7} \text{ s} =$ ~ $2 \cdot 10^{-5} \text{ Hz}$

Exercise: since each scintillator tile is equipped with 2 SiPM, which is the real spurious rate for the CB detector?

Powering the CB:

there are **2 power connectors**:

1. jack 5.5 mm

2. USB

both powered at 5 V

by a power bank

(but you can also use your laptop or the DCDC provided with the CB)

Selectors for COINCIDENCE logic (UP means ON)

Start/Stop/Reset the counter

Each CB has a complete set of signals available on the rear dual-in line connector:

> TOP out signal BOT out signal EXT out signal COINCIDENCE signal

> > EXT in signal START STOP RESET

thus can be operated by a dedicated PC

The sunlight The **e.m. waves**

are **NOISE** sources

Before starting the measurement use the aluminum cover to protect the CB from external noise

How to perform a measurement:

take note of:

1. find a **flat surface** where laying your CB

2. check the acceptance of the CB is not shadowed by any building

3. power it

4. protect it with the cover

5. start the measurement

a. counts

b. **start and stop time** (with 5 seconds max uncertainty)

c. pressure (at least 3 measurements during the count)

d. **altitude** (try several measurements with different mobiles using GPS)

Always take note of all the values!

Absorption measurements

Ρ

Absorption measurements

May we:

- Build our own
 - → cosmic rays altimeter? (for our excursions!)
 - \rightarrow cosmic ray barometer?

American Journal of Educational Research. 2016, 4(16), 1164-1173 doi:10.12691/education-4-16-7

Absorption measurements

Underground / inside buildings

- Has the absorption phenomenon the same roots as for the atmosphere?
- Can we get information

→ on the average density of material
(by knowing the thickness)?
→ on the total thickness traversed (by knowing the material density?

Arrival direction (muon flux w.r.t. angle)

What we should expect?How to measure it?

Arrival direction (muon flux w.r.t. angle)

Arrival direction (muon flux w.r.t. angle)

East-West effect

- Is it possible to measure it with a CB?
- Maybe making use of the orography?

Natural radioactivity

- Most of the natural radioactivity (gamma, electrons) cannot traverse both scintillators
- Is it possible to measure somehow the natural radioactivity with a CB?
- Of course taking into account the uncertainties related to the rate of false signals for a single scintillator?

... and monitoring solar activity?

... and many other experiments!!

Welcome to Physics!

BACKUP slides

The Coincidence calibration

