September 2018

Detector Simulation Working Group (DeSi-WG) EEE telescope simulation

M.Battaglieri, S.Grazzi G.Mandaglio, C.Pellegrino, S.Pisano F.Coccetti, F.Noferini, M.Ungaro

DEtectorSImulation-WG

Goal: generate pseudo data using GEANT4 to track CORSIKA generated particle

e. 2 Lab 12

DeSi-WG: targets and work plan

***EEE MRPC** response to cosmic rays implementation in GEANT4

- MRPC geometry: material, size, ...
- MRPC response (parametrized)
- Telescope response: geometry, trigger, ...
- Telescope location: effect of roof, walls, surrounding materials, ...
- Telescope: muon rates for different multiplicities
- Multi-telescopes: coincidence rates
- Single/multiple telescope(s) studies: bottom-up muons, ...

GEant4 Monte Carlo: GEMC

Calenter Datacter

0

Trigger

4

GEMC

A GEANT4 librarys based simulation tools

- components description
- components interaction
- user-defined geometry and hit
- internal generator (included cosmic rays)
- multiple input/output format
- CAD geometry accepted
- interactive/batch mode
- source on GitHub

GEMC graphic interface

Installed (and now working!) in EEE cluster at CNAF!

M.Ungaro

EEE-MRPC simulation: geometry

 * Detailed drawings provided by R.Zuyeuski
* Geometry/materials verified during assembly of Genova telescope at CERN (March 2017)

EEE-MRPC simulation: geometry

* Realistic geometry implemented in GEMC

- materials (Al, Vetronite-G10, Cu, glass, Alhoneycomb, Gas
- geometry
- active layers (so far only bottom strips + gaps)

EEE-MRPC simulation: response

* No avalanche simulated in details

* Effective hit process:

- Sample XY (and Z) muon hit on on bottom strip plane
- Assume both strips and gaps are active
- Apply a spread of σ =8.4mm (2 σ) to account for multiple hits and spread position resolution both in X and Y
- Apply a time spread (constant) σ =94ps

Nuclear Instruments and Methods in Physics Research A 593 (2008) 263-268

*MRPC parameters

cluster

- 90x160 active area
- Active: 2.5cm x 24 strips + 0.7cm x (24-1) gaps

muon

strip

- Time spread: $\sigma = 94$ ps
- Cluster size: $\sigma_X = 8.4 \text{ mm}$
- Cluster size: $\sigma_{\rm Y}$ = 8.4 mm
- HIT_{XY} is gaussian-spread and projected on the sensitive area to derive strip multiplicity

events / 25 ps

EEE-Telescope simulation: geometry

*Telescope Parameters

- 3 chambers
- -50/0/+50 cm apart
- placed in a concrete box wall on all sides (30cm concrete)

*Individual response to cosmic muons (2-10 GeV) of the three chambers

EEE-Telescope simulation: response

*Comparison to data EEE Report: Description of the event reconstruction procedures for the EEE telescopes

EEE-Telescope simulation: response to cosmic

- * Current EEE-telescope geometry: -50/0/+50 cm apart
- * Rates are obtained summing up muons generated in different energy intervals
- * Values should be compared to Rate measured in a single-layer-roof EEE telescope

- * Muons gnerated on a sphere but with an uniform distribution on the plane
- * Absolute rate calculation

Energy	fraction of the spectrum (%)	Rate I 248.8Hz * Rec/Gen	Rate -50cm/0/+50cm
0.2 - 2 GeV	44.5	60.1Hz	26.8Hz
2- 10 GeV	41	53.5Hz	22.0Hz
10- 100 GeV	14.2	38.7Hz	5.5Hz
100 - 500 GeV	0.3		
Tot	100		54.3Hz

Summary and future plans

- ***EEE MRPC** response implemented in GEANT4
- *EEE data reconstruction program modified to process pseudo-data
- *Simulations matches data angular and time distribution
- *Absolute rates of single muon hits on the telescope (3 chambers) are comparable
- *Fine-tuning of the simulations parameter (cluster size, time resolution, ...) in progress
- ***Next steps:**
 - use of CORSIKA to generate and propagate multi-muon hits (primary hadron in high atmosphere + shower propagation to the sea-level)
 - Sim/data for multi-telescopes correlation comparison