

The project started in September 2017; it will be run until August 2018

<u>Coordinator</u>: <u>Simonetta Croci</u> - Professore Associato Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma <u>Participants:</u>

- Luca Bruni: grant Centro Fermi September 2017 31th August 2018
- Massimo Manghi Dip. Medicina e Chirurgia, Università di Parma Ricercatore
- Walter Tinganelli TIFPA Trento Ricercatore

The project started in September 2017; it will be run until August 2018

Work placecs & Collaborations:

- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma
- **CIM** Centro Interdipartimentale Misure Università di Parma
- **TIFPA** Trento Institute for Fundamental Physics and Applications.
- **CENTRO DI PROTONTERAPIA** Trento

PROJECT GOAL 2017 – 2018: the investigation of cell cytoskeleton and plasmatic membrane as biological targets of ionizing radiations.

- Protocol setting of proton and X-ray irradiation of Hs 578Bst cell line.
- Cell membrane denaturation, followed by cell fixation.
- Atomic Force Microscopy measurements (cell topographies).
- Computational analysis of the AFM images. (<u>M. Manghi</u> *et al*: MDI: integrity index of cytoskeletal fibers observed by AFM. EPJPlus - 2016)

STUDI E RICERCHE INRICO FERMI

BioTarget - Ionizing Radiations Effects on Biological Targets

TARGETS

Microtubules

Tubuline – diam 25 nm

Cell movement

Cell shape

Track for organelle movements

Spindle for mitosis and meiosis

Microfilaments

Actin – diameter 4-7nm

Cell movement

Cell shape

Organelle movements

Muscle cell contraction

Proton cell irradiation setting

Proton cell irradiation setting

PROTON THERAPY CENTER - Trento

Hs 578Bst cell line irradiated with protons. Doses: 2Gy and 8Gy

Proton cell irradiation setting

PROTON THERAPY CENTER - Trento

Hs 578Bst cell line irradiated with **protons**. Doses: 2Gy and 8Gy

Proton beam energy: 150MeV

Dose rate: 1.2Gy/min

Beam size: 6cm x 6cm

Coverglass with cells grown

Petri dish

X – ray cell irradiation setting

TIFPA - Trento

Hs 578Bst cell line irradiated with **X-ray**. Doses: 2Gy, 8Gy and 25Gy Intensity 250KVp

X-ray beam

Protocol validation of Hs 578Bst cell membrane denaturation

Protocol validation of Hs 578Bst cell membrane denaturation

Hs 578Bst cells grow on conventional microscopy cover glasses (21mm x 21mm); 24h later irradiation

Protocol validation of Hs 578Bst cell membrane denaturation

Hs 578Bst cells grow on conventional microscopy cover glasses (21mm x 21mm); 24h later irradiation

Cell membrane denaturation (T. Berdyyeva 2005 **102**, 189; 2005) Ultramicroscopy.

Protocol validation of Hs 578Bst cell membrane denaturation

Hs 578Bst cells grow on conventional microscopy cover glasses (21mm x 21mm); 24h later irradiation

Cell membrane denaturation (T. Berdyyeva 2005 **102**, 189; 2005) Ultramicroscopy.

Cell fixation (biological cape air flow - 30')

STUDI E RICERCHE ENRICO FERMI

BioTarget - Ionizing Radiations Effects on Biological Targets

Head Custom

Control Hs 578Bst

Atomic Force Microscopy measurements (non contact – air)

STUDI E RICERCHE ENRICO FERMI

BioTarget - Ionizing Radiations Effects on Biological Targets

Control Hs 578Bst

Atomic Force Microscopy measurements (Non contact air)

Control Hs 578Bst

Atomic Force Microscopy measurements

Control Hs 578Bst

Atomic Force Microscopy measurements

MUSEO STORICO DELLA FISICA

CENTRO STUDI E RICERCHE ENRICO FERMI

BioTarget - Ionizing Radiations Effects on Biological Targets

Control Hs 578Bst

Atomic Force Microscopy measurements

MUSEO STORICO DELLA FISICA

CENTRO STUDI E RICERCHE ENRICO FERMI

BioTarget - Ionizing Radiations Effects on Biological Targets

Control Hs 578Bst

Atomic Force Microscopy measurements

8Gy protons Hs 578Bst Atomic Force Microscopy measurements

MUSEO STORICO DELLA FISICA

CENTRO STUDI E RICERCHE ENRICO FERMI

BioTarget - Ionizing Radiations Effects on Biological Targets

8Gy protons Hs 578Bst Atomic Force Microscopy measurements

MUSEO STORICO DELLA FISICA

CENTRO STUDI E RICERCHE ENRICO FERMI

BioTarget - Ionizing Radiations Effects on Biological Targets

8Gy protons Hs 578Bst Atomic Force Microscopy measurements

Computational analysis of the samples

- Method to identify regions with defined geometrical shape:
 - layout determination of geometrical shapes;
 - it is possible to recognize straight segments;
 - assessment of fibres density and connectivity
- Procedure:
 - isolation of relevant structures;
 - morphological transformation to delete spurious structures;
 - evaluation both number and length of straight segments.

STUDI E RICERCHE ENRICO FERMI

BioTarget - Ionizing Radiations Effects on Biological Targets

Computational analysis of the samples through parameter

STORICO DELLA FISICA

STUDI E RICERCHE ENRICO FERMI

BioTarget - Ionizing Radiations Effects on Biological Targets

Computational analysis of the samples through parameter

STUDI E RICERCHE ENRICO FERMI

BioTarget - Ionizing Radiations Effects on Biological Targets

Computational analysis of the samples through parameter

STUDI E RICERCHE ENRICO FERMI

BioTarget - Ionizing Radiations Effects on Biological Targets

Computational analysis of the samples through parameter

EXPERIMENTAL GOALS 2018 – 2019: to explore plasmatic membrane and cell cytoskeleton as biological targets of ionizing radiations.

- Quantification of cytoskeleton and membrane damages into irradiated cells to possibly use them as conceivable dosimetric parameters.
- Investigation on cytoskeleton damage of **Hs 578T** cell line (human breast cancer cell line) and possible involving into cancel cell invasiveness.
- Possible use of K⁺ biosensor to detect if irradiation leads Hs578Bst cell line to K⁺ leakage – G4 as K⁺ biosensors and oncogenic regulators. (Centro Fermi supports 2014 – 2017)

2017 meeting and conference:

19th IUPAB congress and 11th EBSA congress "G-quadruplex: G-rich DNA sequences like potassium biosensor" - poster

103° Congresso Nazionale della Società Italiana di Fisica, Trento 11 – 15 Settembre 2017 **"A view of DNA short sequences rich in guanines like potassium biosensor"** – communication.

Pubblication:

<u>Bruni L. et al: PS2.M: Looking for a potassium biosensor. EPJPlus - 2017</u> <u>Undereview)</u>