

The Extreme Energy Event network Status and Perspectives

Ivan Gnesi for the EEE Collaboration

The Extreme Energy Event network

SIF 2017

Ivan Gnesi

Introduction

EEE is an extended and inhomogeneous array for the search of Long Distance Correlations among EAS

Secondary cosmic rays

- + solar activity-CR relation
- + EAS study
- + CR anisotropies
- + climate-CR relations

Expected by several models - GZ - Massive DM decays - topological defects - many others

SIF 2017

Ivan Gnesi The

Introduction

Present status:

Total **53** telescopes

- 47 inside high schools buildings
- 2 at CERN
- 4 inside INFN and Universities
- 49 sites selected for the upgrade
- 6 new telescopes in 2017
- over a surface of $3\ 10^5\,km^2$
- covering 10° in latitude and longitude

SIF 2017

Mostly organized In <mark>12 clusters</mark> for EAS detection

Ivan Gnesi

The Multigap Resisitve Plate Chamber (see M.P. Panetta talk)

Same technology used for the Time Of Flight (TOF) measurement at ALICE (LHC)

6 gas gaps 250-300 μm

 $C_{2}H_{2}F_{4}$ (98%) / SF_{6} (2%) mixture

18-20 kV working voltage

24 strips per chamber, 2.5 cm pitch

The signal induced on the strips is the sum of the 6 gaps signals

The avalanche time is very short \rightarrow time resolution

The EEE station

SIF 2017

Ivan Gnesi

The EEE station

Some EEE telescope installations

SIF 2017

Ivan Gnesi

Data Treatment

Data are automatically sent to INFN CNAF, reconstructed and processed by DQM

> 50 billions tracks with $\chi^2 < 10$ have been collectected for analysis

The data collection rate is at present 25 billions/y → increasing

Ivan Gnesi

RUN-4 starting on October 2nd

SIF 2017

Results – Forbush Decreases

Forbush Decreases and solar activity

SIF 2017

Ivan Gnesi The Extreme Energy Event network

Results – Forbush Decreases

Extreme Energy Events

preliminary

Ivan Gnesi

SIF 2017

CR anisotropies @ TeV scale

+ Dipole (10-3) : relative motion/well defined sources?
+ Multipole (<10-4): local turbulent magnetic field component ?

SIF 2017

Ivan Gnesi

Results – subTeV anisotropies

EEE stations are suitable for studying TeV CR anisotropies

Ivan Gnesi

With the present preliminary dataset **no evidences of anisotropies** at the level of the available **2%** resolution

with the whole statistics, at least factor 100 \rightarrow 0.2% resolution expected

SIF 2017

Results – Studies on EAS

SIF 2017

Studies on EAS

Ivan Gnesi The Extreme Energy Event network

Results – Studies on EAS (see F. Coccetti talk)

Coincidences observed up to 1500 m for all telescopes pairs

Coincidence time is corrected according to the µ arrival directions.

The correction is:

008Åtries

17600

17400

17200

17000

16800

-10000-8000 -6000 -4000 -2000

SIF 2017

This enhance S/B ratio.

Corsika simulation

confirms the observed coincidence rate for all the telescope pairs.

1182 m
6 σBetter efficiency
corrections to be
evaluated.

Acceptance taken into account

The Extreme Energy Event network

Results – Studies on EAS (see F. Coccetti talk)

SIF 2017

Ivan Gnesi

EAS Long Distance Correlation

SIF 2017

Ivan Gnesi The Extreme Energy Event network

Long Distance Correlated EAS (LDC EAS) have not yet been observed

only hints from LAAS collaboration N.Ochi et al., J.Phys. G: Nucl.Part.Phys. 29(2003)1169. Y.Fujiwara et al., Nucl.Phys. B (Proc.Suppl.) 151(2006)481. A.Iyono et al., 32nd ICRC 2011, doi:10.7529/ICRC2011/V01/0063.

EEE array:

SIF 2017

12 clusters 66 cluster pairs distances from 100 to 1200 km

Ivan Gnesi

Analysis approach:

- each cluster identify EAS
- searching for time coincidences among EAS observed at the various clusters for decreasing time windows
- measuring the background of spurious coincidences
 - at the shortest time window

- testing residual events probability to belong to background distribution (p-value)

SIF 2017

Ivan Gnesi

Few events observed with

Pvalue<0.05

with time differences and opening angles compatible with a LDC-like event topology

Event	EEE pairs	Distance	$\Delta \mathbf{t}$	ϑ_{rel}	Expected	р-	UTC Time
		(km)	(μs)	(deg)	events	value	
(A)	BOLO - CAGL	614	86	27.1	0.0069 ± 0.0002	0.007	26.11.2015 19h 07' 16"
(B)	BOLO - LAQU	290	740	9.1	$0.014 {\pm} 0.001$	0.014	25.03.2016 18h 31' 05"
(C)	CATA - TORI	1040	88	9.2	0.0265 ± 0.0005	0.026	09.01.2016 06h 42' 15"
(D)	GROS - TORI	377	297	14.4	0.032 ± 0.001	0.031	04.06.2016 02h 31' 08"
(E)	CERN - CATA	1200	248	9.3	$0.049 {\pm} 0.001$	0.048	15.02.2016 01h 28' 29"
(F)	CAGL - CERN	817	690	8.7	0.073 ± 0.002	0.070	26.02.2016 09h 21' 58"
(G)	CERN - SAVO	285	99	6.1	$0.108 {\pm} 0.001$	0.102	24.11.2015 12h 35' 47"
(H)	CAGL - SAVO	566	99	19.9	0.115 ± 0.001	0.109	08.04.2015 00h 02' 50"
(I)	BOLO - CERN	450	73	19.4	$0.1194{\pm}0.0001$	0.112	03.05.2016 06h 46' 35"
(L)	LAQU - SAVO	453	760	10.9	$0.142 {\pm} 0.003$	0.132	13.12.2015 21h 43' 00"

The EEE network is being extended and optimized in order to increased the total exposure of one order of magnitude within the next RUNs

Ivan Gnesi

SIF 2017

EEE is a non-omogeneous array of high time resolution tracking telescopes (MRPCs)
 Main scope is the observation or limit extraction for EAS Long Distance Correlations

Present situation:

- **53 telescopes** (increasing at rougly 10% rate per year)
- 10 degrees lat/long coverage
- 12 clusters / 66 cluster pairs
- 10° lat/long span
- **50 billion tracks** in 2 years of data taking

Items under study

- Solar activity survey via CR flux (FD mainly)
- Sub-TeV anisotropies (no observation at 2% level \rightarrow next RUN below 1%)
- Upward muon flux
- EAS Long Distance Correlation → few events with low p-value observed: increased statistics with the next RUN

Upgrade activities:

SIF 2017

- Array extension
- EAS energy identifications (sw)
- Super-clusters

Ivan Gnesi

Thanks to the installation of telescopes in High Schools EEE has a strong outreach impact. Didactic activities on CR at schools and students involvment in the experiment!

BACKUP SLIDES

SIF 2017

Ivan Gnesi The Extreme Energy Event network

The Multigap Resisitve Plate Chamber (see M.P. Panetta talk)

The Extreme Energy Event network

20000

SIF 2017

Ivan Gnesi

Results – Forbush Decreases

Ivan Gnesi

SIF 2017

Track Rate time trending (χ^2 <10) corrected

(get Ascension (degrees)

Ivan Gnesi

SIF 2017

Results – subTeV anisotropies

EEE stations are suitable for studying TeV CR anisotropies → local IMF features → relative motion (Compton Getting) already observed effects to be 10⁻³-10⁻⁵ (e.g. ICECUBE @ 100 TeV max)

Correction map \rightarrow scrambling method

20 randomly generated tracks per each real track over 24 h

Corrected Map Its the ratio between the raw data and correction map

A preliminary analysis using <mark>110 Mevs</mark> (now 50 billions available) have been performed