Observations of cosmic ray flux decreases with the Extreme Energy Events telescope array

Extreme Energy Events

Centro Studi e Ricerche "E. Fermi" (Roma) Istituto Nazionale di Fisica Nucleare University of Bari, Pisa, Siena, Torino, Cagliari Bologna, Roma Tor Vergata, Salerno CNAF (Bologna) ICSC World Laboratory (Geneva) CERN (Geneva)

102° Congresso SIF, 2016, September 26-30, Padova (Italy)

The Experiment

The Extreme Energy Events is a net of 52 telescopes (growing)

for studying Low and High ECR and related phenomena with a broad scientific program.

Telescopes are installed in italian High Schools (and Research Centers) thus EEE keeps also an educational and outreach parallel mission

EEE telescope array - diplacement

Telescopes are arranged in clusters with typical distances 30 m to 6 km. Each cluster size allows for different energy thresholds: i.e. 3 station - 1 km clusters $E_{th} \sim 10^{17}$ eV. Clusters are up to 1000 km far away.

this allows for both studying Extended Air Showers and exotics + climate and interplanetary CR related issues

EEE telescope array - Scientific Program

Single Telescope

- Local Anisotropies \Rightarrow La Rocca talk
- Upward particles (ν physics?) \Rightarrow Panetta talk
- long term solar activity correlation
- prompt solar events
 ⇒ this talk
- atmosphere/climate effects

Long baseline

- GZK and GZK-like effect
 - γ disintegration (e.g. Sun)
 - interstellar medium inter.
 -
- astronomy? to be investigated

Short baseline

HECR around the knee \Rightarrow Cicalò talk

The Telescopes

The Multigap Resistive Plate Chambers

EEE chamber is an extended version of ALICE TimeOfFlight modules

- 6 gas gaps: 2 glass plates with their external surfaces painted with resistive paint;
 5 floating glass plates (spaced by 300 μm)
- $C_2H_2F_4$ (98%) and SF_6 (2%) continuously fluxed by (3l/h)

The Fishing line is used as a simple spacer (300 μ m) between glasses

The Telescope

- Each telescope: 3 MRPC, 160 x 80 cm, 24 strips
- operated at 20 kV
- 6 Fast amplifier/discriminator NINO ASIC
- GPS
- VME-based data acquisition
 2 Multi-hit TDCs (100 ps resolution)
- Weather Station

The telescope equipment

The Station Performances

\Rightarrow De Gruttola talk

Chamber Efficiencies and Dark Count

+ 200 ps time res. and tracking

Ivan Gnesi (CF-INFN-UNITO)

GCRD@EEE

28/9/2016 - SIF2016, Padova 12 / 27

The Data Taking, Concentration, Reconstruction Philosophy

Data Taking and Coordinated Runs \Rightarrow Cicalò talk

Data Transfer and automatic reconstruction @ CNAF \Rightarrow Coccetti+Bossini talks

- Data are stored at the INFN-CNAF computer centre of Bologna
- A complex software architecture has been set-up to reconstruct the data and provide quasi-online (few hours) Data Quality checks on the web for monitoring purposes.

Ivan Gnesi (CF-INFN-UNITO)

Data Quality Monitor

Rate Monitor

Daily and Run by Run based trending fluxes are provided in a few hours and published online

Environment

Pressure, Temperature and Humidity Data are also collected and made available for corrections and analysis.

Cosmic Rays flux modulation

by prompt solar events

Forbush decreases and sun-related phenomena

Forbush decreases are prompt CR flux decrease correlated to CME and Flares on Sun.

Flares are prompt e.m. flashes at ${\sim}10^{25}$ J (P_sun ${\sim}10^{26}$ W).

Coronal Mass Ejections are proton burst at $\sim 10^{23-24}$ J with speed 20-2000 km/s.

A complete understanding of both Flares, CME and Forbush is not yet available. The most reliable scenario is a two step mechanism which involves

- the magnetic line disruption via plasma thermal pressure, with a proton burst emission
- magnetic line reconnection and reheating with a flare emission

Interplanetary magnetic field and low energy CR are

- first swept and compressed by the shock wave
- then again disturbed by the proton burst

Events observed before coordinated runs:

Scale X2 flare 2×10^{-4} Wm⁻² on Earth Scale X5.4 flare 2nd in magnitude since last solar minimum

the Corrections: Atmospheric Pressure \Rightarrow fluctuations of pressure modify the material depth above telescopes, and mimic flux variation

after corrections and time integration the amplitude and significance of the decrease is measured

GCRD@EEE

Flare 2014-11: X1.6 Class from Tesis-CORONAS-PHOTON experiment ...few days waiting for the effects on Earth...

$\begin{array}{l} \mbox{Forbush 2014-11} \\ \mbox{good correlations with Neutron Monitors} \\ \mbox{but muon amplitude a factor} \sim 2 \mbox{ higher} \end{array}$

Forbush 2015-06: M3.8-M6.5 flares good correlations with Neutron Monitors but muon amplitude a factor \sim 2 lower

Forbush 2015-11: M3.7 flare very good correlations with Neutron Monitors

Ivan Gnesi (CF-INFN-UNITO)

Forbush 2015-11: M3.7 flare very good correlations with Neutron Monitors

Forbush 2015-12: M1.8 flare

low correlations with Neutron Monitors and two-step recovery mechanisms

Ivan Gnesi (CF-INFN-UNITO)

Forbush 2015-12: M1.8 flare

low correlations with Neutron Monitors and two-step recovery mechanisms

- the different CR Forbush effects on muon and neutron component is not understood (and not confirmed)
- Pressure, Temperature corrections have to be deeply studied in order to perform a robust correction to the non-CR realted modulation effects
- Latitude and Longitude dependance studies are possible also with the EEE detectors (10 degrees in lat and long coverage)
- crossing the data with NM net is on the way
- ...
- after stabilizing the telescopes, long term studies on solar cycle survey are feasible.

Summary and Conclusions

The Educational and Outreach activities

- Telescopes are built at CERN
- by students and teachers
- installed in high schools
- monitored by students
- > 500 students involved
- ...growing

- Masterclasses
- Lectures
- Trainings on detectors
- Analysis
- Schools
- Events

Conclusions

- EEE is a wide tracking telescope array
 - 52 telescope already working
 - > 25 in construction
- high time resolution
- tracking capabilities
- I0 degrees in latitude and longitude coverage
- suitable both for studies at energies below and above the knee
- multipurpose array
 - HECR
 - CR flux modulation
 - local anisotropies (with conincences also higher energies available)
 - studying the feasibily of upward flux identification
- Environmental Studies
- + educational purposes

> 2015 Articles

- EEE coll.: Looking at the sub-TeV sky by cosmic muons detected in the EEE MRPC telescopes"
 - EPJ-Plus (2015), 130:187
- EEE coll.: A study on upward going particles with the Extreme Energy Events telescopes
 - Nucl. Instr. and Meth. A 816 (2016) 142:148
- ... and preparing
- "The EEE Telescope performances"
- "An extended study of subTeV anisotropies with the EEE array"
- "A study of multistation coincidences at the km scale with the EEE array"
- "A Forbush decrease survey with the EEE telescopes"