MRPCs:

construction and tests

AM 2017 05 10

13 MRPCs already built 2 in construction + 6 by July

20170222001 LAMP-01 20170223002 LAMP-01 20170225003 LAMP-01 20170314004 GENO-01 20170316005 GENO-01 20170317006 GENO-01 20170405007 SIFN-02 20170406008 SIEN-02 20170407009 SIEN-02 20170425010 CARI-01 20170426011 CARI-01 20170427012 CARI-01 20170509013 TORI-05 20170510014 TORI-05 20170511015 TORI-05

+ 3 LODI-03 + 3 CAGL-04

All of them 6 gaps 250 um + 5 glasses 280 um. Note the green band to identify (Roman)

Tests flow

Test during the constructions:

Electrodes Resistivity

HV

strips

Test after constructions:

Gas tightness

Efficiency
Dark rates

ork currents

Delivery

If any problem

Tests during the constructions

HV

The good quality of HV contact on electrodes is ensured by carbon tape (black) between contact and glass.

The upper electrode is the negative.

The electrodes are properly labeled for avoiding mistakes during the telescope installation

A proposal for a standard telescope axis definition

Left Side

Right Side

We could define as the Standard for telescopes orientation

the LEFT on the negative HV side and the RIGHT on the positive

giving the axis as in the sketch.

Tests during the constructions

Flat cables are prepared in advance.

Right orientation is taught and checked during soldering.

Unused twisted pair are tied.

Strips

Solderings are checked both for

1. mechanical strength 2. right order

several times and by different people

Tests during the constructions

Good electrical connections are tested by Bossini's Box on both sides. The test is repeated:

with dummy connectors before closing the chamber
 after laying the chamber within the chassis
 after chassis closing

Strips

The gas tightness test is performed as follows:

- 1. 100 ml of air are injected during each step up to 2 mbar of overpressure
 - 2. Volume vs Pressure curve is measured
- 3. the chamber is closed and the Pressure variation vs time is measured
- 4. corrections for volume variation due to Temperature are applied5. the volume time derivative is the estimated leakage

A sniffer has been used to detect leakages:

On chamber 001, after 4 days fluxing, no leak can be identified by the sniffer.

On chamber 2 (7 l/h estimated) after 12 hours fluxing no leakages can be identified

Hypotesis:

the leak are distributed
 we have to estimate better the corrections to the estimation

However seems that

0.1-0.3 l/h is the standard for good chamber

What about the others?

Efficiency is measured for the 3 chambers laying on CERN-01 (green).

Chambers are fluxed 4 days before measurements.

The trigger is the CERN-01.

The data sent to DAQ come from CERN-01 bottom and middle chamber and one of the chambers under test.

By reconstructing tracks triggered by CERN-01, hits on tested chamber are searched.

20170223002 by scintillators

Efficiencies are very good.

Especially for 007-008-009 stable plateau is shown.

Dark Rates and Currents

are not strongly significative
because the telescopes
are fluxed only few days
and high voltages
are applied few days/hours
before the measurements.

We should decide if we want a real Dark Rate/Dark Current behaviour and change test flow

Summary document

A summary table serves as:

1. fast note during construction to be given to teachers

2. to be sticked to the chamber after test completion and changed/updated for future actions

3. as a template for a web mask where to upload data on a DB after tests

The DB will contain also root files with Trees or Plots.

Comments/Ideas/Upgrades