EEE MRPC response to cosmic muons simulation with GEMC (GEANT4)

M.Battaglieri INFN-GE - Italy

MRPC single chamber in **GEMC**

*Realistic geometry implemented

- materials (Al, Vetronite-G10, Cu, glass, Al-honeycomb, Gas
- geometry
- active layers (so far only bottom strips + gaps)

*No avalanche simulated in details

*Effective hit process:

EEE

- Sample XY (and Z) muon hit on on bottom strip plane
- Assume both strips and gaps as active
- Apply a spread of σ =8.4mm (2 σ) to account for multiple hits and spread position resolution both in X and Y
- Apply a time spread (constant) σ =94ps

2

<u>e () lab12</u>

*MRPC parameters

- 90x160 active area
- Active: 2.5cm x 24 strips + 0.7cm x (24-1) gaps
- Time spread: $\sigma = 75$ ps
- Cluster size: $\sigma_X = 8.4 \text{ mm}$
- Cluster size: $\sigma_{\rm Y}$ = 8.4 mm
- HIT_{XY} is gaussian-spread and projected on the sensitive area to derive strip multiplicity

*Telescope Parameters

• 3 chambers

eelab12

- -80/0/+80 cm apart
- placed in a concrete box wall on all sides (30cm concrete)

EEE

<u>e @lab12</u>

M.Battaglieri - INFN GE

elab12

Energy	fraction of the spectrum (%)	Rate I 248.8Hz * Rec/Gen	Rate
0.2 - 2 GeV	44.5	36.6Hz	16.3Hz
2- 10 GeV	41	30.2Hz	I2.4Hz
10- 100 GeV	14.2	20.4Hz	3Hz
100 - 500 GeV	0.3		
Tot	100		31.7Hz

Rate for single chambers: 62+73+23 = 160 Hz

* Work program

- \checkmark implement 3 chambers (easy, just copy the geometry)
- ✓ generate cosmics (full spectrum), derive absolute single-hit rate and compare to data
- study effect of surrounding material (rate ratios, geometrical effects)
- compile and run the giant4 model at CNAF and make it public
- more realistic response from data (same time/space resolution)
- avalanche model (?) requires electric fields to be implemented in GEMC
- more realistic output format to feed the rec program (?)