Atmospheric pressure and temperature correction models for POLA muon rates

*** Preliminary work ***

Ombretta

Pressure effect

- anticorrelation between rate and pressure
- barometric coefficient depends on cutoff rigidity and zenithal angle
- atmospheric pressure variations effect bigger than temperature effect

	Barometric $oldsymbol{eta}$	Temperature $lpha$
Neutrons	~ -0.7 %/mbar	O(10 ⁻²) %/°K
Muons	~ -0.2 %/mbar	O(10 ⁻¹ – 10 ⁻²) %/°K

• Empirical model
$$\left(\frac{\Delta I}{I}\right)_P = \beta \cdot \Delta P$$

$$\Delta I(t) = ln \left[\frac{I_{\text{OBS}}(t)}{I_{M}} \right] * 100 = \beta * \Delta P(t)$$
$$\Delta P(t) = P(t) - P_{M}$$

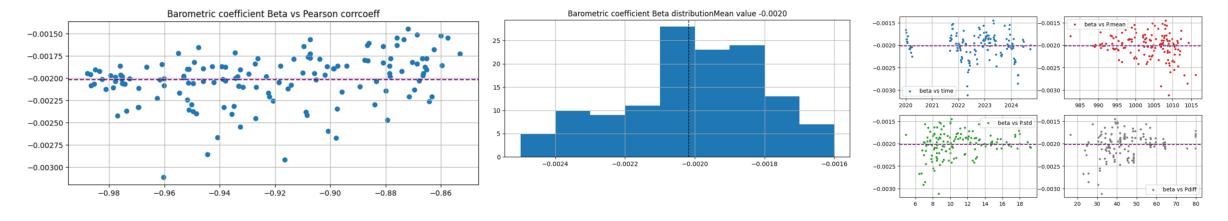
 β estimated by linear regression between M(t) and ΔP

$$I_P = I_0 * e^{0.01*\beta*(P-P_0)}$$

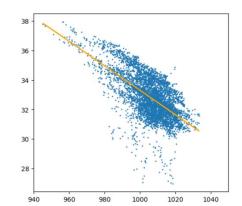
Barometric coefficient POLA-1

• 1h resampled data, 30 days running window, Pearson>-0.85

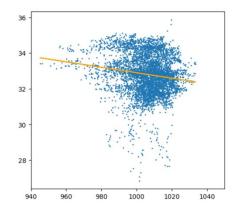
-0.00202



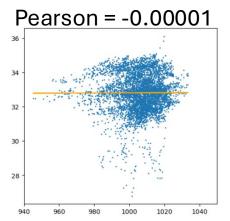
Pearson before = -0.576



Pearson with Beta_avg = -0.132



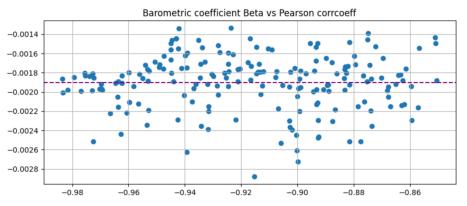
Beta computed over 5 years = -0.002492

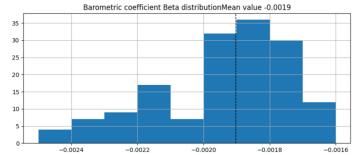


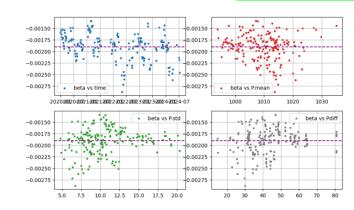
Barometric coefficient POLA-3

• 1h resampled data, 30 days running window, Pearson>-0.85

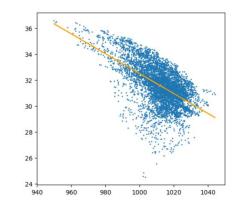
-0.00190



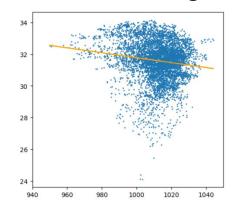




Pearson before = -0.526

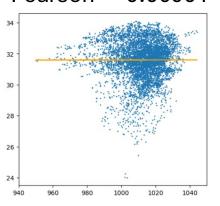


Pearson with Beta_avg = -0.125



Beta computed over 5 years = $\frac{-0.002394}{}$

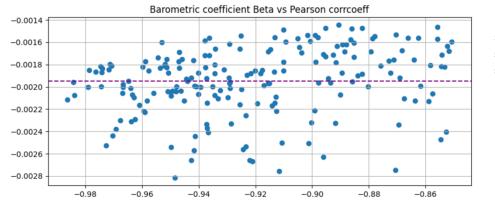
Pearson = -0.00001

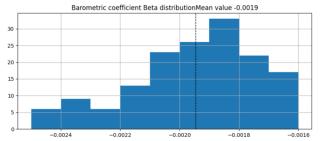


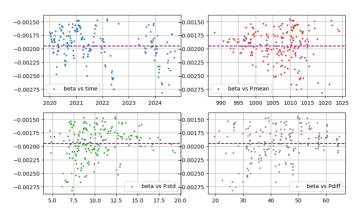
Barometric coefficient POLA-4

• 1h resampled data, 30 days running window, Pearson>-0.85

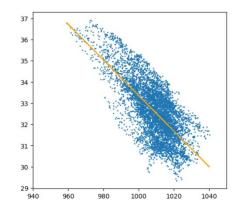
-0.00195



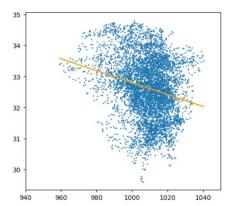




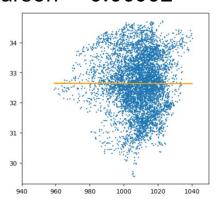
Pearson before = -0.623



Pearson with Beta_avg = -0.179



Beta computed over 5 years = $\frac{-0.002526}{0.00002}$



Temperature effects on rates

In scientific literature, two opposite effects:

- 1. negative effect: increasing temperature (ex. winter to summer) causes expansion of the atmosphere, so more muons decay because their propagation path is longer, and we observe a decrease of muon intensity at ground level
- 2. positive effect: temperature influence on muon production from the decay of charged pions

Models

$$\left(\frac{\Delta I}{I}\right)_T = K_G \Delta T(h_G) + C_H \Delta H(h_M) + K_M \Delta T(h_M)$$

$$\left(\frac{\Delta I}{I}\right)_T = \int_0^p \alpha(x) \Delta T(x) dx$$

 h_M = altitude of maximum production of secondary particles

 $\Delta T(h_{
m G})$ temperature variation at ground level

 $\Delta H(h_M)$ height variation at the altitude of maximum production of secondary particles

 $\Delta T(h_M)$ temperature variation at the altitude of maximum production of secondary particles

de Mendonça (2013)

de Mendonça comparing 4 methods:

- 1. only temperature variations measured at ground level (h_G)
- 2. only temperature variations measured at the altitude where there is the maximum in secondary cosmic rays production ($h_M \sim 16.5 \ km$)
- 3. both h_G and h_M factors
- 4. approximated integral method $\left(\frac{\Delta I}{I}\right)_T = \int_{\Omega} \alpha(x)\Delta T(x)dx$

de Mendonça (2016) comparing more methods

- Atmospheric expansion method
- Ground method
- MMP method
- combination of the 3

- integral (theoretical) method
- approximation

$$\Delta I_T = \alpha_{\mathrm{MSS}} * \Delta T_{\mathrm{MSS}}$$

definition of 'effective temperature'

$$\Delta I_T = \alpha_{\text{ATE}} * \Delta H[p], p = 100 \text{ hPa}$$

$$\Delta I_T = \alpha_{\text{GRD}} * \Delta T [h_{\text{GRD}}]$$

$$\Delta I_T = \alpha_{\rm MMP} * \Delta T [h_{\rm MMP}]$$

$$\Delta I_T = \sigma_{\text{ATE}} * \Delta H[p] + \sigma_{\text{MMP}} * \Delta T[h_{\text{MMP}}]$$

$$\Delta I_T = \int_0^{x_{\text{GRD}}} \alpha_{\text{THR}}[x] * \Delta T[x] * dx$$

$$T_{\text{MSS}} = \sum_{i=0}^{n} w[h_i] * T[h_i], \ w[h_i] = \frac{x[h_i] - x[h_{i+1}]}{x[h_0]}$$

$$T_{\text{EFF}-M} = \frac{\int_0^{x_{\text{GRD}}} \omega_M[x] * T[x] dx}{\int_0^{x_{\text{GRD}}} \omega_M[x] dx}, \quad \omega_M[x] = x * (e^{-\frac{x}{\lambda_\pi}} - e^{-\frac{x}{\lambda_n}})$$

Temperature profile from NASA + balloons

- The temperature height profiles observed between 14 and 111 km are provided by the SABER (Sounding of the Atmosphere Using Broadband Emission Radiometry) instrument on NASA's Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics mission
- No SABER temperature data measurements are available below 14 km.

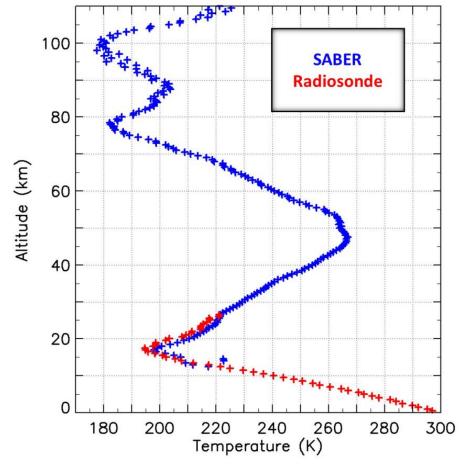
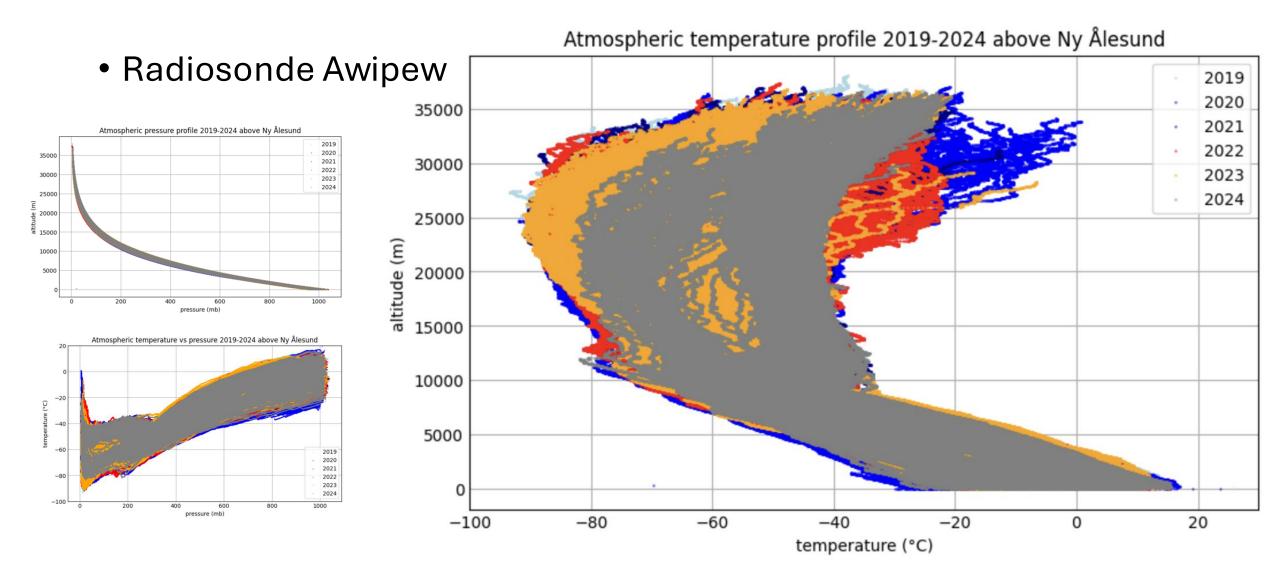
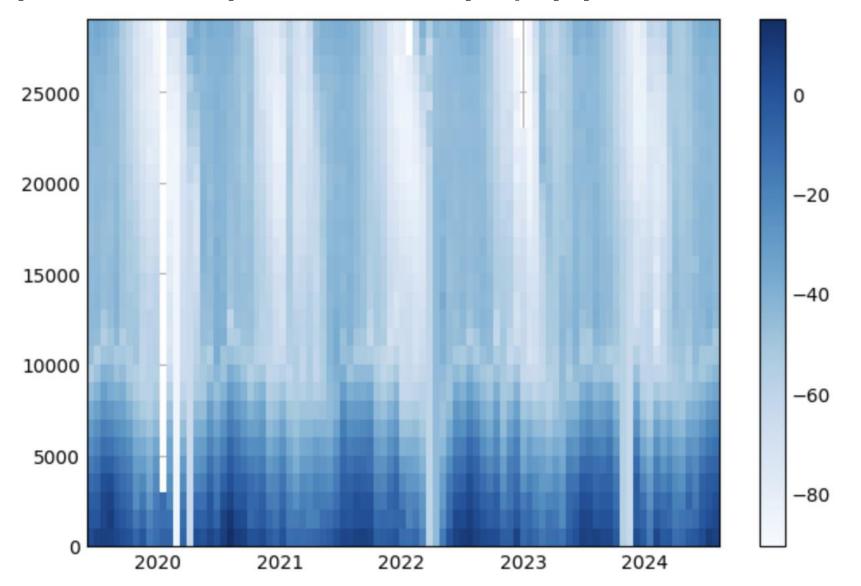


Figure 2. Atmospheric temperature profile composite using SABER (blue) and radiosonde (red) data observed above the SMS detector region on 2009/11/06.

Temperature profile above Ny Ålesund



Temperature profile map (approximation)



Note

All POLA rates are first corrected for pseudoefficiency

```
#---- correction Majority (Paola LaRocca)
def effCorrMaj(eff,ratePair):
    sum=0
    for ipair in range(0,16):
        e1 = eff[map_ch1[ipair]]
        e2 = eff[map_ch2[ipair]]
        e3 = eff[map_ch3[ipair]]
        e4 = eff[map_ch4[ipair]]
        effAv = e1*e2*e3 + e1*e2*e4 + e1*e3*e4 + e2*e3*e4 - 3*e1*e2*e3*e4

    if (effAv < 0.2):
        return np.nan
        sum += ratePair[ipair]/effAv
    return sum</pre>
```