

Candidate: Luigi Ernesto Ghezzer Supervisor: Francesco Nozzoli Master thesis defense

Study of the variability of the muon cosmic ray flux

Outlook:

1) Variabilities of CR

- 2) Detector & systematics
- 3) Physics results
- 4) Perspectives @ Doss Trento
- 5) Conclusion

Solar modulation & cycles

11-years quasi periodicity of Sun's activity measured as variations in the N of sunspots

400

Cycle 19

Cycle 20

Cycle 21

Cycle 22

- SSN

Cycle 24

Forbush decrease

Reduction in the observed intensity of galactic cosmic rays following a solar flare with coronal mass ejection (CME). The magnetic field within the solar wind plasma deflecting some galactic cosmic rays away from Earth.

ver: 2012-04-19 21:26:00 UT

Outlook:

1) Variabilities of CR

- 2) Detector & systematics
- 3) Physics results
- 4) Perspectives @ Doss Trento
- 5) Conclusion

Geomagnetic rigidity cutoff

Geomagnetic rigidity cutoff R_c measures the shielding effect by Earth's magnetic field.

Outlook:

1) Variabilities of CR

- 1) Detector & systematics
- 2) Physics results
- 3) Perspectives @ Doss Trento
- 4) Conclusion

Pressure: negative correlation with low energy µ

When pressure grows more energy is lost crossing the atmosphere because of the higher air density: stopping & decay

 $\Phi = \Phi_0 \, \exp[\beta(p - p_0)]$

Passage of a typhoon above a muon detector Nogaya, Japan, October 2009

[doi:10.3847/0004-637X/830/2/88]

Temperature: positive correlation with high energy µ

high energy μ produced by high energy π decay Effect due interplay between π interaction and decay

Complex multi-particle system:

$$\frac{dN_i(E_i,X)}{dX} = -\frac{N_i(E_i,X)}{\lambda_i(E_i)} - \frac{N_i(E_i,X)}{d_i(E_i)} + \sum_j \int_E^\infty dE_j \frac{N_j(E_j,X)F_{ji}(E_j,E_i)}{\lambda_j E_i}$$

[https://doi.org/10.1016/j.astropartphys.2009.12.006]

ionization and decay con be ignored for high energy μ : this simplifies the cascade equation

Temperature: effect @ underground laboratories

For underground detector, expected positive correlation between T_{eff} and μ flux

the linear coefficient \mathbf{a}_{T} depend only on the energy threshold $\langle \mathsf{E}_{\mathrm{thr}} \cos \theta \rangle$

Information about $K/\pi \sim 0.1$ production

Temperature: negative correlation with low energy µ

low energy μ affected by decay and ionization processes, longer path imply a decrease of the flux, transportation is more complex, empirical method are more popular

Temperature: effect @ ground based µ telescopes

μ flux measured by ground-based GMDN, top: North hemisphere, bottom: Southern hemisphere [doi:10.3847/0004-637X/830/2/88]

For ground based detector expected negative correlation between T_{MSS} and μ flux

Linear coefficient \mathbf{a}_{T} have a complex dependency on:

E_{thr}, altitude, geomagnetic cutoff, latitude, …

Data is needed to better understand the effect

Outlook:

1) Variabilities of CR

2) Detector & systematics

- 3) Physics results
- 4) Perspectives @ Doss Trento
- 5) Conclusion

nowadays is the northernmost muon detector: 79°N, Rigidity Cutoff 0.18GV

Study/minimization of systematics: rate drops

Date [day]

Study of systematics: comparison of different detectors

cautious systematic uncertainties estimated still few % of measured rate The dispersion of the difference of measured flux by POLA1 - POLA3 give information about the uncertainty of single detectors.

$$\sigma_{diff} = \sigma(r_1 - r_2) / \sqrt{2} < 0.3Hz$$

 $\sigma_{sys} = \sigma_{spk} \oplus \sigma_{diff}$

Outlook:

- 1) Cosmic ray & air shower
- 2) Variabilities of CR
- 3) Detector & systematics
- 4) Physics results
- 5) Perspectives @ Doss Trento
- 6) Conclusion

Solar modulation: comparison with NM

Solar modulation clearly visible in both in NM and μ flux (POLA-R).

Intensity of the solar modulation of NM depends on the $\rm R_{\rm c}$

A quantitative comparison: Ny-Alesund R_c = 0.18 GV reduction factor: 0.95

OULU R_c = 0.8 GV reduction factor: 0.88

Solar modulation: µ production cutoff @ Ny-Alesund

Comparison with NM reduction suggests an effective cutoff for μ:

expected a production cutoff since a primary proton need to have an higher energy to produce a μ compared to neutron

MIP μ deposit ~ 2 GeV energy crossing the atmosphere μ can carry only a fraction (~ 0.3) of the primary proton production cutoff dominates over R_c

Solar modulation: µ reduction @ high R_c (YBJ)

Seasonal variation

Clear presence of annual periodicity, expected from the effect of atmospheric temperature variation, confirmed the negative correlation for ground based detector

$$\Phi(t) = A \cos\left(2\pi \frac{t - t_0}{T}\right) + Bt + C$$

Amplitude[%]	Period [years]	$t_0 \text{ offset } [days]$	chi^2/dof
3.4 ± 0.1	1.003 ± 0.003	7 January ± 2	846/283

Lomb-Scargle periodogram

Hints for sub and bi-annual periodicities

3yr moving window Lomb-Scargle periodogram suggests the possible presence of:

- bi-annual modulation, possibly connected to the atmospheric QBO [https://doi.org/10.1016/B978-0-12-382225-3.00232-2]
- quasi-periodic ~250 days and ~150 days modulation, similar to ones suggested by other studies [https://doi.org/10.3390/universe9090387]

The exact nature could be both of solar or atmospheric origin. A deeper investigation of these effects deserve additional experimental/analysis efforts to reduce systematic uncertainties in the μ flux measured by POLA-R detectors.

Excluding detector temperature effects

seasonal variation parameters with systematic std

Amplitude [%]	Period [years]	$t_0 \text{ offset } [days]$
3.4 ± 0.7	1.00 ± 0.01	12 January ± 8

Temperature of the electronics influences the efficiency of the detectors. Detectors are maintained in a stable environment, however a small seasonal variation of detector temperature is expected.

22

POLA4 rate for different detector T

Correlation between T_{MSS} and μ rate: \mathbf{a}_{T}

Temperature influence on μ ground based flux is described by \mathbf{a}_{T} the correlation with the T_{MSS}, the mass weighted temperature

$$\Delta I_{\mu} = \alpha_{T_{\rm MSS}} \Delta T_{\rm MSS}$$
$$T_{\rm MSS} = \int_0^{X_{\rm GRD}} dX T(X)$$

850 hPa temperature and 500 hPa geopotential ERA5 hourly - 00:00 on 1 January 2023

X: slant depth, the amount of materials crossed by the air shower

T(X): atmospheric temperature profile (data from ERA5)

[https://doi.org/10.1002/gj.3803]

temperature (°C)

Comparison of \mathbf{a}_{τ} @ Ny-Alesund and GMDN

Measurements at Ny-Alesund add information on \mathbf{a}_{T} northernmost μ detector.

 $|\mathbf{a}_{\mathsf{T}}|$ @ Ny-Alesund is twice as large as that observed at middle latitude locations in the southern hemisphere.

Global Muon Detector Network is a collaboration of ground based μ detector.

Previous studies have suggested that $|\mathbf{a}_{\mathsf{T}}|$ grows with the latitude

[doi:10.3847/0004-637X/830/2/88]

EFFECT CONFIRMED!

Location	Coord.	Alt.	R_c	α_T [%/K]	Rlin
		[m]	[GV]		
Nagoya	35.15°N	77	11.5	-0.257 ± 0.002	-0.96
(NGY-Japan)	$136.97^{\circ}\mathrm{E}$				
Kingston	43.0°S	65	1.8	-0.201 ± 0.003	-0.83
(HBT-Australia)	$147.29^{\circ}\mathrm{E}$				
Sao Martinho da	29.44°S	488	9.3	-0.194 ± 0.005	-0.69
Serra (SMS-Brazil)	$53.81^{\circ}W$				
Kuwait City	9.37°N	19	13.8	-0.273 ± 0.002	-0.96
(KWT-Kuwait)	47.98°E				
Ny-Alesund	78.92°N	30	0.18	-0.410 ± 0.020	-0.78
(POLA-R Svalbard)	$11.92^{\circ}\mathrm{E}$				

Prospect: investigation of the semi-annual seasonal variation @ Piedicastello tunnels Attenuation @ Piedicastello tunnels

Summary

Time dependence of the µ flux measured @ Ny-Alesund with POLA-R detectors:

- Highest latitude (lowest R_c) measurement of the µ flux @ the ground
- Observation of enhanced solar modulation and Forbush due to the low R_c
- Observation of the µ flux seasonal dependence anti-correlated with atmospheric T & P
- Strong support to the suggested latitude dependence of the temperature effect coefficient
- Hints for bi-annual and sub-annual periodicities possibly related to solar/atmospheric effects
- New measurement proposal @ Doss Trento looking for a semi-annual periodicity of µ flux

Talks and publications:

"Studio delle variazioni stagionali e pluriennali del flusso dei muoni atmosferici" 110° Congr. Naz. SIF, Bologna "Measurement of the muon flux in the tunnels of Doss Trento hill" submitted to Nuclear Instruments and Method A "Annual quasi-periodicity in muon rate observed by PolarquEEEst detectors at 79°N" submitted to Eur. Phys. J

Ongoing: Pseudoefficiency and systematic mitigation

Majority: at least ³/₄ SiPM fires 4And: all SiPM fires

Effect of pEfficiency correction

Majority vs 4And rate

Difference could give information about systematics induced by pEfficiency

High difference correlated to "negative spikes"

POLA3 (more "noisy")

Time stability: changes in threshold?

threshold raised ?

threshold lowered?

It seems that the threshold was changed, both time the efficiency rises

less noise higher sensibility?

Time stability: long term reduction of pEfficiency

Ch 3

Time stability: long term reduction of TimeOverTrashold

avTimeOT

pEfficiency vs TimeOverTrashold

Highly correlated between the SiPM of the same Pair

pEfficiency vs TimeOverTrashold

Possible noisy populations present in all channels

Pair0 rate contaminations

Search for a pEff reliability parameter

In low counts and low number of missing, is pEff reliable?

maybe regions where a SiPM is frequently over threshold and produces false coincidences?

BACKUP SLIDES

Secondary neutron

high energy: know-out, low energy: evaporation

Outdoor: Fremont Pass, CO; Mount Washington, NH; Yorktown Heights, NY; and Houston, TX. Indoor sites included Leadville, CO, and computer labs at IBM sites in Yorktown Heights, NY, and Burlington, VT.

OULU NM pressure corrected

${\rm T}_{\rm MSS}$ from atmospheric temperature profile

C/km

$$P=rac{
ho}{M}R^{*}T$$
 Ideal gas equation $P=P_{b}\left[1-rac{L_{M,b}}{T_{M,b}}(h-h_{b})
ight]^{rac{g_{0}^{\prime}M_{0}}{R^{*}L_{M,b}}}$ Barometric formula, const Lapse rate ~ 10

00

$$\kappa[h] = \int_{h}^{\infty} \rho[h] dh, \ \rho[h] = rac{P[h]}{T[h]} * rac{M_{ ext{Mol}}}{R}$$
 Slant depth

Calculation: 14 isobaric levels, ranging from 1000 to 1 hPa, with a spatial resolution of 0.25x0.25 degrees^2.

data: ERA5, European Centre for Medium-Range Weather Forecasts

$\boldsymbol{\mu}$ flux at the ground

MC short telescope efficiency (1000ev/Energy)

Sun B field

Earth B field

$$r_g = 3.3 ~{
m m} imes rac{(\gamma m c^2/{
m GeV}) \cdot (v_\perp/c)}{(|q|/e) \cdot (B/{
m T})}$$

example: B ~ 50 μ T E = 1 GeV r_a= 10 km

Trigger, pseudoefficiency, detector temperature

Barometric coefficient

 $\Phi = \Phi_0 \, \exp[\beta(p - p_0)]$

R and latitude

cut