Measurements campaign aboard the Amerigo Vespucci ship

UPDATE

Paola La Rocca EEE Analysis Meeting – 12/12/2024

The trip

- 2022, 8 October: POLA-02 installation in Trieste
- 2022, 29 October: end of the trip in Livorno
- Latitude interval covered: 38° N-46° N
- Minor issues: direct sun light on the detector

The data set

- Continuos readout (only a short interruption at the beginning)
- Data reduction \rightarrow Rates evaluated in 1-minute steps (28699 values)
 - rate
 - rate4c

- // rate majority condition + 1 single track
 // rate requiring all 4 SiPMs fired + 1 single track
 - // fate requiring all 4 SIPMS lifed + 1 Single track
- ratePair[16]ratePair4c[16]

- // rate for each pair of plates (majority condition + 1 single track)
 // rate for each pair of plates (44NID condition + 1 single track)
- // rate for each pair of plates (4AND condition + 1 single track)
- **4AND** condition (4 SiPMs fired + 1 single track): rate4c
 - rate4c = $\sum_{i=0}^{15}$ ratePair4c[i]
- Majority condition (3 out of 4 SiPMs fired + 1 single track): rate
 - rate = $\sum_{i=0}^{15}$ ratePair[i]
- Rates corrected for barometric effect and efficiency

Update of the analysis

- 1. Selection criteria
- 2. Order of corrections
 - Barometric effect, efficiency \rightarrow efficiency, barometric effect
- 3. Results compared to POLA-01 published data
 - Eur. Phys. J. C (2023) 83:293
- 4. Estimation of the normalization factor

1. Selection criteria

- status = 0
- pres > 800 && < 1100
- temp AND temp2 > 15 && < 40
- rate > 10
- (rate -rate4c)/rate < 0.1
- Efficiency[ipair] > 0.2
- corrRate4c > 15 → corrRate4c > 27
- rate4c/corrRate4c>0.95 → removed

Total number of rejected measures: 8048/28699 (<mark>28%</mark>) → 4872/28699 (**17%**)

 \rightarrow Statistical uncertainties reduced

2. Order of corrections

The order of the corrections applied (for barometric effect and efficiency) was inverted

→ now major correction first applied

BEFORE: barometric effect, efficiency

34 F

33

NOW: efficiency, barometric effect

32 E 31 30E 29 F 28 27 26 1020 1022 1024 1018 1026 1028 1030 1032 1034 Pressure [mbar]

2.5E-3 / mbar

025.94 mbar

Rate4c corrected for efficiency VS pressure

Rate4c corrected for efficiency and barometric effect VS pressure

Rate4c corrected for efficiency and barometric effect VS temperature

2. Order of corrections

The order of the corrections applied (for barometric effect and efficiency) was inverted

→ now major correction first applied BEFORE: barometric effect, efficiency NOW: efficiency, barometric effect

Rate4c VS Rate (both corrected for efficiency and barometric effect)

→ No difference between Rate and Rate4c

3. Results compared to POLA-01 published data

Eur. Phys. J. C (2023) 83:293

Measurement of the cosmic charged particle rate at sea level in the latitude range $35^\circ \div 82^\circ$ N with the PolarquEEEst experiment

M. Abbrescia^{1,2}, C. Avanzini^{3,4}, L. Baldini^{3,4}, R. Baldini Ferroli⁵, G. Batignani^{3,4}, M. Battaglieri⁶, S. Boj^{7,8}, E. Bossini^{3,4}, F. Carnesecchi⁹, D. Cavazza¹⁰, C. Cicalò⁸, L. Cifarelli^{10,11}, F. Coccetti¹², E. Coccia¹³, A. Corvaglia¹⁴ D. De Gruttola^{15,16}, S. De Pasquale^{15,16}, L. Galante¹⁷, M. Garbini^{10,12}, G. Gemme^{6,12}, I. Gnesi^{12,18}, E. Gramstad¹⁹, S. Grazzi^{6,20}, E. S. Håland¹⁹, D. Hatzifotiadou^{9,10}, P. La Rocca^{21,22}, Z. Liu²³, L. Lombardo²⁴, G. Mandaglio^{20,22}, A. Margotti¹⁰, G. Maron²⁵, M. N. Mazziotta^{2,a}, A. Mulliri^{7,8}, R. Nania¹⁰, F. Noferini^{10,b}, F. Nozzoli²⁶, F. Ould-Saada¹⁹, F. Palmonari^{10,11}, M. Panareo^{14,27}, M. P. Panetta¹⁴, R. Paoletti^{3,28}, M. Parvis²⁴, C. Pellegrino²⁹, L. Perasso⁶, O. Pinazza¹⁰, C. Pinto³⁰, S. Pisano^{5,12}, F. Riggi^{21,22}, G. Righini³¹, C. Ripoli^{15,16}, M. Rizzi², G. Sartorelli^{10,11}, E. Scapparone¹⁰, M. Schioppa^{18,32}, G. Scioli^{10,11}, A. Scribano^{3,28}, M. Selvi¹⁰, M. Taiuti^{6,33}, G. Terreni³, A. Trifirò^{20,22}, M. Trimarchi^{20,22}, C. Vistoli²⁹, L. Votano³⁴, M. C. S. Williams^{9,23}, A. Zichichi^{9,10,11,12,23}, R. Zuveuski^{9,23}

- ¹ Dipartimento di Fisica "M. Merlin"dell'Università e del Politecnico di Bari, via Amendola 173, 70125 Bari, Italy
- ² INFN, Sezione di Bari, via Orabona 4, 70126 Bari, Italy
- ³ INFN, Sezione di Pisa, largo Bruno Pontecorvo 3, 56127 Pisa, Italy
- ⁴ Dipartimento di Fisica"E. Fermi", Università di Pisa, largo Bruno Pontecorvo 3, 56127 Pisa, Italy
- ⁵ INFN, Laboratori Nazionali di Frascati, via Enrico Fermi 54, 00044 Frascati, RM, Italy
- ⁶ INFN, Sezione di Genova, via Dodecaneso, 33, 16146 Genoa, Italy

3. Results compared to POLA-01 published data

Eur. Phys. J. C (2023) 83:293

Systematic error = 1.4% (to be checked)

Thanks to Nicola for the macros

- Efficiency correction
- Shielding effect
- Seasonal effect
- Solar cycle effect
- Average pressure

- Efficiency correction (96% for POLA-01) $\rightarrow \sim 4\%$
- Shielding effect
- Seasonal effect
- Solar cycle effect
- Average pressure

Possible contribution to the normalization factor:

- Efficiency correction (96% for POLA-01) $\rightarrow \sim +4\%$
- Shielding effect (measurement outside) \rightarrow ~ +2%
- Seasonal effect
- Solar cycle effect
- Average pressure

12

- Efficiency correction (96% for POLA-01) $\rightarrow \sim +4\%$
- Shielding effect (measurement outside) \rightarrow ~ +2%
- Seasonal effect \rightarrow no correction if Nanuq is reference
- Solar cycle effect
- Average pressure

Table 1 List of the locations where POLA-01 took data			
Location	Period (day/month/year)	Latitude (°)	Altitude (m)
CERN (Geneva)	26/06/18-28/06/18	46.23	441
Nanuq	21/07/18-05/09/18	66.82	0
Vigna di Valle	27/11/18	42.1	153
Cosenza	04/12/18-05/12/18	39.3	222
Cefalù	06/12/18	38.0	0
Catania	31/01/19	37.5	158
Lampedusa*	07/03/19-08/03/19	35.5	10
Bologna	08/04/19	44.5	81
Bologna-Hannover	10/04/19	44.6-51.0	200-700
Hannover-Frankfurt	11/04/19	52.3	60
Frankfurt-Geneva	12/04/19	50.0-46.0	100-500

- Efficiency correction (96% for POLA-01) $\rightarrow \sim +4\%$
- Shielding effect (measurement outside) \rightarrow ~ +2%
- Seasonal effect \rightarrow no correction if Nanuq is reference
- Solar cycle effect (4 years 2018-2022)
- Average pressure

- Efficiency correction (96% for POLA-(
- Shielding effect (measurement outsid
- Seasonal effect \rightarrow no correction if N_{ϵ}
- Solar cycle effect (4 years 2018-202
- Average pressure

- Efficiency correction (96% for POLA-01) $\rightarrow \sim +4\%$
- Shielding effect (measurement outside) \rightarrow ~ +2%
- Seasonal effect \rightarrow no correction if Nanuq is reference
- Solar cycle effect (4 years 2018-2022) $\rightarrow \sim +3\%$
- Average pressure

Possible contribution to the normalization factor:

- Efficiency correction (96% for POLA-01) $\rightarrow \sim +4\%$
- Shielding effect (measurement outside) \rightarrow ~ +2%
- Seasonal effect \rightarrow no correction if Nanuq is reference
- Solar cycle effect (4 years 2018-2022) \rightarrow ~+3%
- Average pressure

POLA-01: 1011.88 mbar POLA-02: 1025.94 mbar β = -2.5E-3 /mbar

 $\rightarrow \beta x \Delta P = +3.5\%$

Possible contribution to the normalization factor:

- Efficiency correction (96% for POLA-01) $\rightarrow \sim +4\%$
- Shielding effect (measurement outside) \rightarrow ~ +2%
- Seasonal effect \rightarrow no correction if Nanuq is reference
- Solar cycle effect (4 years 2018-2022) $\rightarrow \sim +3\%$
- Average pressure $\rightarrow \sim +3.5\%$

Tot. 12.5%

Conclusions

- POLA-02 data in agreement (if normalization factor = 1.1), within uncertainties, with POLA-01 published results
- Almost all contributions to the normalization factor can be estimated

Next steps:

- Investigate POLA-02 rate at highest latitudes (plateau)
- Evaluate systematic uncertainties for POLA-02 data
- Plot rate VS vertical geomagnetic cutoff (Fig. 9 in Eur. Phys. J. C (2023) 83:293)