Cuts effectiveness on POLA-X muon rates

Ombretta Pinazza meeting analisi EEE 15/3/2024

WG: F. Nozzoli, L. Ghezzer, O. Pinazza

Data

Original data from /home/eee/analisi/polarRates/outPOLA-0x.root (rates per minute)

1/6/2019 - 8/2/2024, total minutes 2466751

CUTS (applied in this order):

- status = 0
- pressure available and in [700, 1100 mbar]
- rate min = 20.0 Hz
- temp max = 40.0
- rateRaw/rate/r1/r2 max diff = 3 Hz
- effiency min = 0.8

Grazie Franco Riggi per gli spunti di riflessione riguardo i tagli e la stima degli errori sistematici

	POLA-	1	POLA	-3	POLA	-4	POLA-A
Before NyA	284006		399949		30302		
Total events	1563120	(63.4%)	2144281	(86.9%)	2224597	(90.2%)	2622029
Valid events	1224238	(78.3%)	1135197	(52.9%)	1347099	(60.6 %)	2365818
Excluded events	338882	(21.7%)	1009084	(47.1%)	877498	(39.4 %)	
- status	277179	(17.7%)	358374	(16.7%)	644398	(29.0 %)	
- pressure	91	(<0.0%)	143	(<0.0%)	64	(<0.0 %)	
- temp	19115	(1.2%)	335595	(15.7%)	44182	(2.0 %)	
- diff	37691	(2.4%)	37334	(1.7%)	28816	(1.3 %)	
- Low rate	69	(<0.0%)	398	(<0.0%)	239	(<0.0 %)	
- efficiency	4737	(0.3%)	277240	(12.9%)	159799	(7.2 %)	

-

Raw rates (no cuts)

With cuts

With cuts

• zooming, with error bars (statistical errors)

With cuts resampling 15min

With cuts, resampling 1dresampling 1day, and zooming

Efficiency

Efficiency index corresponds to SiPM index

Example: POLA-3 efficiency in time

Efficiency POLA-1 after cuts

• all rates

- accepted rates

 (y-axis adapted
 to specific range)
- eff_{min}≥0.8

rejected rates

Efficiency vs time for POLA-X, accepted rates

RatePair after cuts

rate of a TOP-BOTTOM tiles pair

0,5,10,15 (diagonals): overlapping tiles 2,7,8,13: (?) tiles with long side in common 3,6,9,12: (?) tiles with short side in common 1,4,11,14: (?) tiles in opposite position RateDir after cuts

Direction mapping

n. Casella	Passaggio di muoni	combinazioni possibili	angolo di incidenza θ
4	perpendicolare	4	$(26, 8731 \pm 26, 8731)^{\circ}$
1 e 7	verticale (sul lato corto)	2 (4 in tutto)	$(61, 1892 \pm 8, 6745)^{\circ}$
3 e 5	orizzontale (sul lato lungo)	2 (4 in tutto)	$(69, 8637 \pm 6, 4000)^{\circ}$
0, 2, 6, 8	diagonale	1 (4 in tutto)	$(73, 0338 \pm 5, 469)^{\circ}$

(tesi Bellagamba)

Tabella 3.1: Legenda per lettura matrice

0

0.0 0.1 0.2 0.3 0.4 0.5

Configurazione disgonale (0, 2, 6, 8)

avToT after cuts

avToT index corresponds to SiPM index

Periodogram after cuts

Peaks POLA-1:	376.3	792.0	528.5	287.2
Peaks POLA-3:	374.9	847.0	536.7	277.1
Peaks POLA-4:	376.7	829.6	539.4	292.1
Peaks POLA-A:	375.3	814.9	539.1	322.4

0.8

0.7

0.5

0.4 200

0.2

0.1

0.0

Conclusions (on cuts)

- important cuts based on status flag, internal temperature and efficiency
- mapping of parameters is complex
- how shall we estimate systematic errors

Correlation between rate and temperature

Correlation between rate and internal temperature

POLA-1 temperature vs rate

POLA 1 8M/200 Reveal vs rate (six terratil)

10

100

126

28

32

POLA 1 USUBI20 temp5 et rate [do temp1, 1]

POLA-3

temperature vs rate

-30

-10

POLA-3 BME266 temp3 vs rate (siz: temp5 1

17

12

39

POLA-4

temperature vs rate

rate vs temperature

rate vs temperature

rate vs temperature

Correlation between rate and internal temperature overall period - resampling over 1d

Correlation between rate and internal temperature

December/January = PEAK MAX

Correlation between rate and internal temperature (1d)

December/January = PEAK MAX

Correlation between rate and internal temperature

June/July = PEAK MIN

Correlation between rate and internal temperature (1d)

June/July = PEAK MIN

Correlation between rate and internal temperature

March/April+Sep/Oct = NODES

Correlation between rate and internal temperature (1d)

March/April+Sep/Oct = NODES

Correlation with environmental parameters

POLA-A rate, resampled for 1d; meteo data from CNR CCT 2m

Correlation with environmental parameters

POLA-A rate, resampled for 1h; meteo data from CNR CCT 2m

OPEN DATA

Open data : differential rates, resolution 1d

Open data: differential rates and stat error

backup slides

Temperature mapping

	Sens	eHat	DS	DS1820 (1-wire)			BME280
Slo	temp1 outline1[2][1]	temp2 outline1[2][2]	temp3 outline1[1][0]	temp3_1 outline1[1][1]	temp3_2 outline1[1][2]	temp4 outline1[3][0]	temp5 outline1[4][0]
Root			temp3	temp2	temp		temp5

SenseHat can give 2 temperatures:

- from humidity sensor (slo: temp1)
- from pressure sensor (slo: temp2)

root	temp	temp3	temp2
Slo	temp3_2	temp3	temp3_1

BME280 Slo: hum1,pres1,temp5 Root: (temp5,humi1,pres1) = getattr(el,"parExtra")

How did I map root and slo temperatures

Abstract

Conferenza: 13th CRIS-MAC 2024 Cosmic-Ray International Studies and Multi-messenger Astroparticle Conference

Annual quasiperiodicity in muon rate observed by PolarquEEEst detectors at 79°N

Since 2019, three scintillation detectors, readout by SiPM and controlled by low-cost electronics, are installed in the scientific research site in Ny Ålesund (Svalbard) at 79°N, recording muons from secondary cosmic rays. The detectors are part of the EEE Project, involving almost 100 secondary schools in Italy.

After collecting nearly 5 years of data, we are able to analyze the muon rate time series and observe an evident oscillating component with a period of about one year. Applying spectral techniques and sinusoidal fit optimization (Lomb-Scargle periodogram) we can quantify the annual component and verify its independence from environmental and experimental factors.

Finally, we compare the observed periodicity with open data provided by other muon experiments and by neutron counters from the NMDB network.