Preliminary analysis of "POLA" detector rates
 L.E. Ghezzer \& F. Nozzoli
 (INFN-TIFPA \& Trento University)

L.E. Ghezzer \& F. Nozzoli INFN-TIFPA UniTN 22/02/2024

Outlook:

1) Identification/mitigation of "short term" systematics: "spike problem"
2) Identification/mitigation of "long term" systematics: "bimodal distribution problem"
3) Possible effect due to solar modulation
4) The "SPIKE" problem: (from the slides of O. Pinazza nov'23)

Original rate and reconstructed TS with 33 fits

The mean is "pulled down" by spikes, the median is a more robust estimator. Spikes are a problem for the sub-year periodicity study (must be solved in future) Now we can publish annual modulation using the median and 15 days bin width

Example of median \& mean estimators for 15 days bin width

-POLA-03

ProjectionY for 15days

For this slice example: Mean $=30.32 \mathrm{~Hz}$ Median $=30.52 \mathrm{~Hz}$ $($ median-mean $)=0.2 \mathrm{~Hz}$ $\sigma / \sqrt{ } n=0.006 \mathrm{~Hz}$

The effect on mean is statistically noticeable

the "spike detection": median-mean estimator

Another suggestion is to reject data points where |median-mean| $>k^{*} \sigma / \sqrt{ } n(k=4-5$ T.B.D. $)$

Using median and 15day bins we can correct/mitigate the spike effect
however a cautious approach is to add a systematic uncertainty related to the mitigation of this known effect: $\sigma_{\text {syst }}=\mid$ median-mean $\mid x$ factor
where factor $=[0,1]$ is a safety factor we must decide.

With this approach the fits to the data will be less affected by the points affected by the spikes.

Example of time series with systematic error

Example of safety factor $=1$ $\sigma_{\text {syst }}=1 \times \mid$ median-mean \mid

Period affected by spikes now have bigger uncertainty.

2) The "bimodal distribution" problem:

L.E. Ghezzer \& F. Nozzoli INFN-TIFPA UniTN 22/02/2024

"bimodal distribution" problem is affecting all the POLA

median difference between POLA (1day)

POLA1-POLA3

median difference between POLA (15days)

For the moment a "pragmatic" solution is to add a systematic error to account this effect:

$$
\sigma_{\text {syst2 }}=\text { WAVG }(\text { STD }(\text { POLA1-POLA4 }) / \sqrt{ } 2 ; \text { STD(POLA1-POLA3) } / \sqrt{ } 2 ; \text { STD(POLA3-POLA4) } / \sqrt{ } 2)
$$

Proposed systematic uncertainties:

POLA 15 days with errorbar $=$ sem

The SEM $=\sigma / \sqrt{n}$ error bars strongly underestimate the systematic effects.
With syst. uncertainties we could start quantitative analysis of the measured "long term" POLA rates

BUT

these effects must be investigated and solved in future to analyze "short term" periodicity

3) possible interpretation due to solar modulation

Conclusions:

1) "spike problem": to be solved to study short term periodicity
2) "bimodal distribution problem": must be solved to study the long term periodicity - solar modulation effects
3) Possible interesting interpretation due to solar modulation
