Periodicity in POLA rates

Part II

Ombretta Pinazza November 2023

Periodicity – Part I (presented 4/5/2023)

- Searching periodicity with SSA (Singular Spectrum Analysis) and DFFT
 - Spectral technique able to separate trend, periodicity and noise
- Prerequisite: regularly sampled data
 - Missing data were filled with spline/interpolation

Francesco Nozzoli (presented 8/6/2023)

- Lomb-Scargle periodogram
 - able to detect periodicity for unevenly sampled data
 - able to take into account statistical/experimental errors

Francesco Noferini (presented 3/7/2023)

• New reconstruction for POLA-x rates

Periodicity analysis part II: LSP and new rates

- New reconstruction almost complete
- Error estimated according to FNozzoli
- Eliminating all values marked as bad, plus a few outlyers
- Computing Lomb-Scargle Periodogram (LSP) and identifying peaks
- Applying the same analysis to other time series
- Recent developments:
 - Computing LSP with running windows of 600 days and plotting in 2D
 - to find out if peaks change in time, like for gravitational waves
 - Signal reconstruction, analysis of residuals
 - to identify secondary components and noise

Available time series

- POLA raw files
 - since PQ2018/NYA2019
- /recon2
 - since PQ2018/NYA2019
 - missing SH values for POLA-4 during 6 months in 2022/2023 \rightarrow no pressure correction
- /home/eee/analisi/polarRates/
 - New reconstruction, official rate data, from PQ2018/NYA2019 to 2023-07-31
- neutron rates from NMDB (corrected for pressure and efficiency)
 - 1min-1h-1d resolution, differential and absolute value
 - OULU available since 1964
- Yang Ba Jin muon telescope (corrected?)
 - Available since 2012
- Kp/Ap/SSN data from NOAA
 - SunSpot Number available since 1932, 1day resolution
- Meteo data at Ny Alesund (CNR, 1 min res)
 - Pressure, temperature, humidity
 - Available from NYA2019 until 2022-12-31
 - with several holes during 2022, trying to fill with temperature datasets (10 min res) from Norwegian Meteorologial Insitute
 - soon I'll request 2023 data

PQ2018=2018-05-01 NYA2019=2019-06-01

without error bars

New official time series for the POLA rates

Incertezza statistica/sistematica proposta da FNozzoli

Costuire istogramma della differenza rate[i]-rate[i-1] (è una sovrastima dell'errore statistico) 1) 2)

Definire $err_{stat} = \sigma/\sqrt{2}$ dal fit gaussiano del bulk Associare al punto $err_{tot}(i) = Max(err_{stat}, Min(|rate[i]-rate[i-1]|,|rate[i]-rate[i+1]|))$ 3)

with error bars

New official time series for the POLA rates

Definire $\operatorname{err}_{\operatorname{stat}} = \sigma/\sqrt{2}$ dal fit gaussiano del bulk Associare al punto $\operatorname{err}_{\operatorname{tot}}(i) = \operatorname{Max}(\operatorname{err}_{\operatorname{stat}}, \operatorname{Min}(|\operatorname{rate}[i]-\operatorname{rate}[i-1]|,|\operatorname{rate}[i]-\operatorname{rate}[i+1]|))$ 3)

POLA-Average Lomb-Scargle periodogram

Average of the three POLA

New reconstruction

- POLA-1

- POLA-3

- POLA-4

1000

1000

1200

Average

Average of the three POLA

/recon2

OULU neutron rate (from NMDB)

POLA NYA period

30 years

all available data: 60y

Other neutron monitors

1 34609 17305 47.4 0.52

Oulu

Alt: 15 m Cutoff: 0.81 GV

Coord: 65.0544, 25.4681

- 2 15823 3957 10.8 0.34
- 3 19634 4909 13.4 0.05
- 4 36093 9024 24.7 0.18

SunSpotNumber (SSN) since 1932

Peaks:				
i	index	days	years	power
0	7878	1970	5.4	0.02
1	12366	3092	8.5	0.05
2	15718	3930	10.8	0.51
3	18890	4723	12.9	0.02
4	21582	5396	14.8	0.02
5	31691	7923	21.7	0.01

Yang Ba Jing muon rate (from http://ybjnm.ihep.ac.cn site)

Pe	Peaks:				
i	index	days	power		
0	1775	178	0.02		
1	2055	206	0.01		
2	2382	239	0.02		
3	2777	278	0.02		
<mark>4</mark>	3644	365	<mark>0.74</mark>		
5	5389	539	0.04		
6	7842	785	0.03		

Meteorological time series (CNR, 2019-2022)

CCT temperature at 2m

CCT relative humidity at 2m

i index days power 0 1443 145 0.02 1 1915 192 0.04

2 3672 368 0.63

3 7282 729 0.06

Peaks:					
i	index	c day	/S	power	
0	859	87	0.	.04	
1	2353	236	0.	.05	
2	3693	370	0.	. <mark>04</mark>	
3	6108	611	0.	. <mark>06</mark>	

Peaks:					
i	inde>	k day	/s	роw	er
0	413	42	0.	02	
1	2181	219	0.	02	
2	3690	370	0.	13	
3	6489	649	0.	03	

Conclusions

- Lomb-Scargle periodogram is a powerful tool to evaluate periodicities in time series (thank you Francesco!)
- POLA rates show a clear annual periodicity
 - Hidden dependency to temperature/humidity?
 - Same trend is found in YBJ muon rates, but we don't know more
- POLA rates do not show clear periodicities below 1 year
- Neutron datasets do not show any annual trend but a solar cycle dependency (~11 years)
 - POLA rates time series might be too short to be able to show this periodicity

POLA-Average: New reconstruction

Spectrogram

starting time

368d

POLA-Average: best fit and residuals

Removing further components: 181.4d, 220.7d, 140d, 253d

Removed 20 periodic components

Removed 40 periodic components

Conclusion /2

- The spectrogram obtained with a time-moving LSP confirms the stability of the 1y periodicity
- Secondary components need further analysis
 - Different time windows and sampling
- The main trend can be represented with 20/40 sinusoidal waves
- Residuals need further analysis to verify their characteristics
 - Ex. Comparing residuals from the 3 POLA