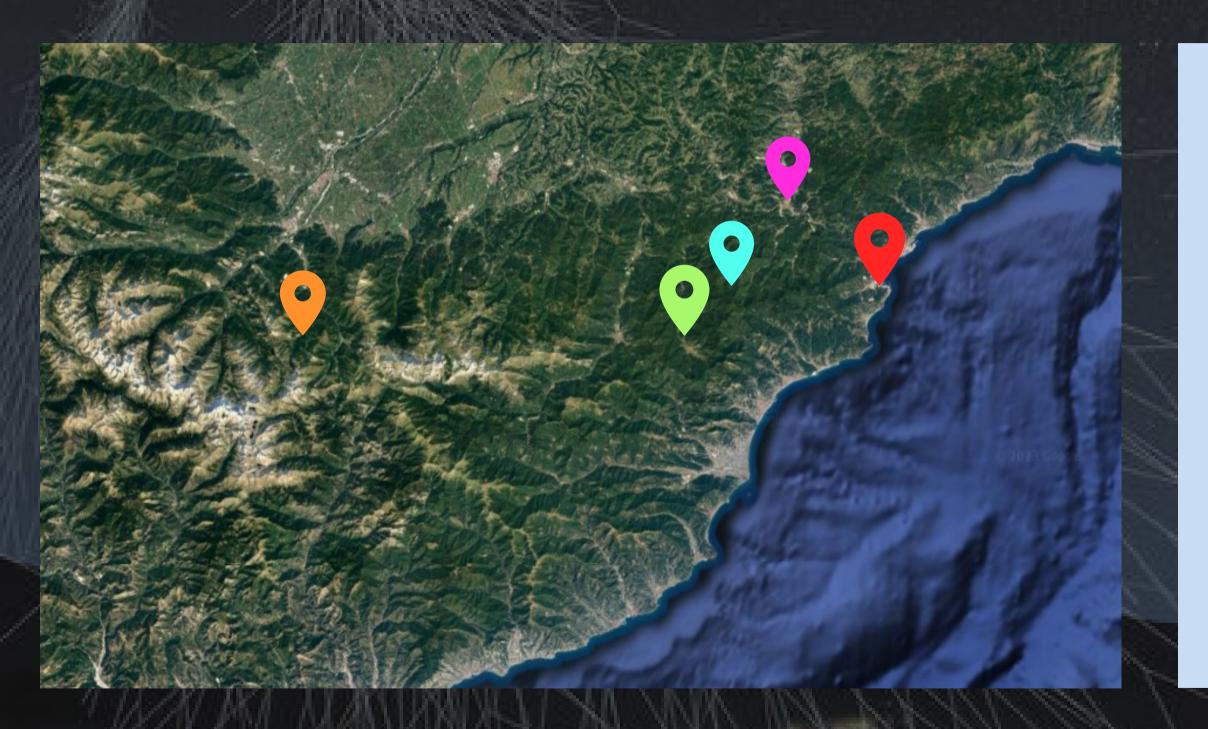


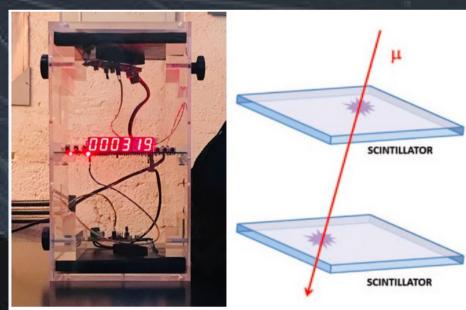
MEASUREMENTS OF THE FLUX OF MUONS AS A FUNCTION OF THE HEIGHT

EEE PROJECT A.S. 2022-2023 RUN COORDINATION MEETING MAY 24, 2023


EXPERIMENT PURPOSE

PLACES	HEIGHTS			
Savona	(0±5)m			
Carcare	(365±5)m			
Bardineto	(720±5)m			
Colle del Melogno	(1050±5)m			
Limone Piemonte	(1523±5)m			

EXPERIMENTAL SETUP AND COSMIC BOX



- The cosmic box is composed by:
 - Two scintillators working in coincidence;
 - Light is collected by a photosensor
 - A display showing the result of the measure;
- During the data taking:
 - The chamber must stand horizontally
 - No contact with the ground
 - Covered with a thin metallic foil

Ref: https://avbc.me/jUE3ZFEj

MEASUREMENTS TECHNIQUES AND ERROR ESTIMATION

- The integration time is 60 minutes:
 - Uncertainty on time: ± 5 s
- Theoretical flux of 0.5 particles/s:
 - we expect 1800 particles/h
 - Poisson uncertainty on counts: 2.3 %
- Height uncertainty: ± 5 m
 - Estimated comparing various altimeters

THEORETICAL VALUE

 $0.5 \text{ Hz} \cdot (3600 \pm 5) \text{s} = (1800 \pm 2)$

https://www.sif.it/riviste/sif/gdf/econtents/2018/059/03/article/6

ACCEPTANCE

• In order to calculate the Cosmic Box's acceptance, we use data taken at sea level compared to the theoretical flux.

$$e = \frac{\left(\frac{\sum x_i}{n} \pm \sqrt{\frac{\sum (x_i - \bar{x})^2}{n(n-1)}}\right)}{0.5Hz \cdot (3600 \pm 5)s} = (0.42 \pm 0.03)$$

Number of counts Savona	Avarage time measurements
1020±30	
930±30	
900±30	
890±30	
870±30	
860±30	(3600±5)s
770±30	
670±20	
660±20	
640±20	
510±20	
420±20	

THEORETICAL VALUE

 $0.5 \text{ Hz} \cdot (3600 \pm 5) \text{s} = (1800 \pm 2)$

DATA ANALYSIS

	Location						
Place	Geographic coordinates	Altitude (m)	Date	Medium temperatures (°C)	Medium pressure (KPa)	Flux of muons (Hz)	Flux normalized to the acceptance (Hz)
Savona	44° 18' 29" N - 8° 28' 52" E	0±5	08/05/23	19.8±0.1	101.9±0.1	0.21±0.01	0.50±0.04
Carcare	44° 21' 37" N - 8° 17' 03" E	365±5	26/04/23	17.2±0.1	97.3±0.1	0.26±0.01	0.63±0.08
Bardineto	44° 11' 32" N - 8° 08' 06" E	720±5	17/04/23	15.4±0.1	92.8±0.1	0.29±0.01	0.68±0.07
Colle del Melogno	44° 13' 44" N - 8° 11' 07" E	1050±5	14/04/23	13.6±0.1	88.5±0.1	0.36±0.01	0.82±0.08
Limone Piemonte	44° 09' 44" N - 7° 34' 07" E	1523±5	20/04/23	10.0±0.1	84.2±0.1	0.40±0.01	0.90±0.08

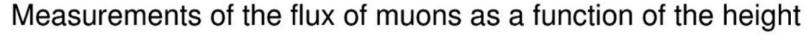
$$M_a = \frac{1}{n} \sum_{i=1}^n x_i$$

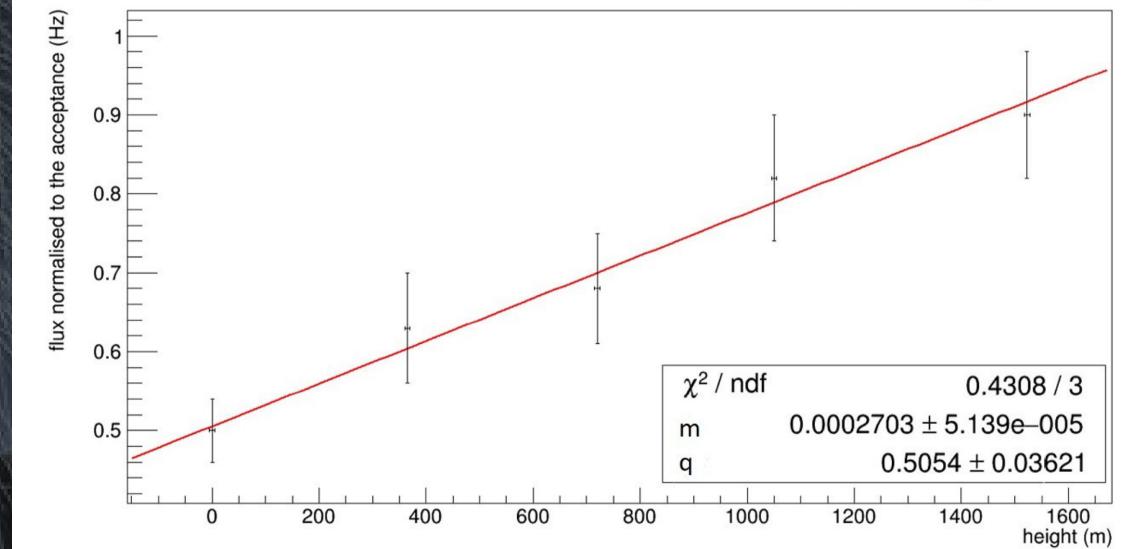
$$e = \sqrt{\frac{\sum_{i=1}^{n} (\overline{x} - x_i)^2}{n(n-1)}}$$

$$\phi = \frac{n}{t}$$

LINEAR REGRESSION AND PLOTS

• The plot shows the flux as a function of the


height, as calculated in slide 7

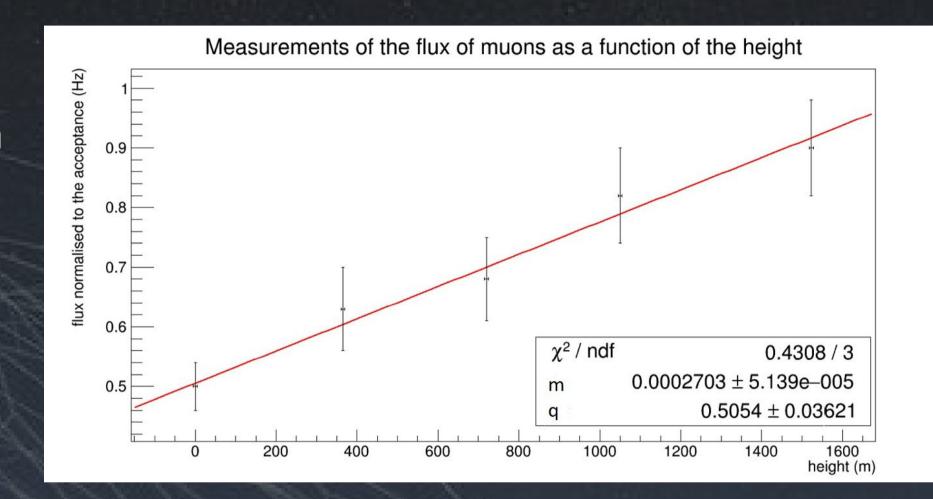

- A linear regression is performed
- The results obtained are:

$$m = (0.00027 \pm 0.00005)^{Hz}/m$$

$$q = (0.51 \pm 0.04)Hz$$

$$\chi^2/ndf = 0.4308/3 = 0.144$$

PERSPECTIVES



- Conclusions:
 - Linear trend
 - Angular coefficient (0.27±0.05) Hz/km
 - In line with theoretical expectations (0.25±0.01) Hz/km
- Future developments:
 - Measurements at:
 - More measures in Savona;
 - Monesi;
 - Colle di Tenda;
 - Other latitudes (Liguria, Toscana, Lisbona, Messina);
 - Barometric correction.

Thanks to:

- Dott. Matteo Pisano, professor at the university of Lisboa
- Prof.ssa Michela Occhetto, Prof.ssa Angela Vigna and Prof. Luca Bovio
- CREF
- EEE collaboration
- The head teachers Prof.ssa Maria Morabito and Prof. Domenico Buscaglia
- All the students involved in this project

