CATACOSMIC-BOX

Ricerca di un'eventuale correlazione tra muoni e radon

May 24, 2023 Liceo Blaise Pascal, Pomezia (RM)

Speakers: Giuseppe Roberto 5C Francesca Sabato 4L

STORICO DELLA FISICA

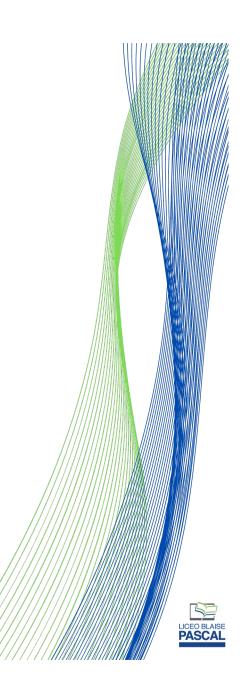
CENTRO FERMI Inviro Irrini

Extreme Energy Events Science inside Schools

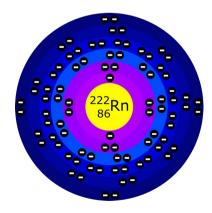
WHERE DID WE LEAVE OFF?

Last year, using our Cosmic Box, we took the following readings:

At different altitudes


At different angles

For the consistency



In relation with gamma rays

OUR NEW PROJECT

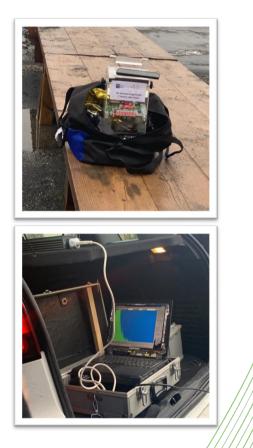
- Measurements taken at different altitudes.
- Additional measurements to compare muon flux and gamma rays.
- Measurements taken in radon-rich closed environments to try finding a correlation with the muon flux readings.

PLACES OF THE MEASUREMENTS

PLACES OF THE MEASUREMENTS

PLACES OF THE MEASUREMENTS Lago di Albano

PLACES OF THE MEASUREMENTS


OUR EQUIPMENT

The measurements were carried out using our **Cosmic Box**, a portable particles detector with an acceptance angle of 46.69° (46° 41' 24"), equipped with two chambers with scintillators (dimensions 0.15 m \times 0.15 m \times 0.01 m) placed parallel at a distance of 0.20 m.

The gamma ray values were measured with a **portable gamma spectrometer**, consisting of a NaI(TI) solid scintillator and a photomultiplier directly interfaced to the NaI(TI) crystal.

Apart from being able to provide the absolute value of measured gamma rays, the detector is also capable of differentiating the radionuclide emitter of the recorded gamma rays based on the energy of the latter.

The instrument was made available to us by a professor of our school, **Geologist Giuseppe Antonino Di Lisa**, who contributed in carrying out the measurements of gamma rays.

PASCA

MEASUREMENTS

The measurements carried out are conditioned by environmental factors such as **temperature** and **pressure** which have not been taken into account during the execution but which will, in any case, be taken into consideration as possible causes of variations in the measurements during our analysis. Furthermore, it should be remembered that each measurement is subject to **statistical fluctuations**, that are variations in the muon rate which is not always constant.

MEASUREMENTS AT DIFFERENT ALTITUDES

The measurements were carried out in 4 different volcanic locations:

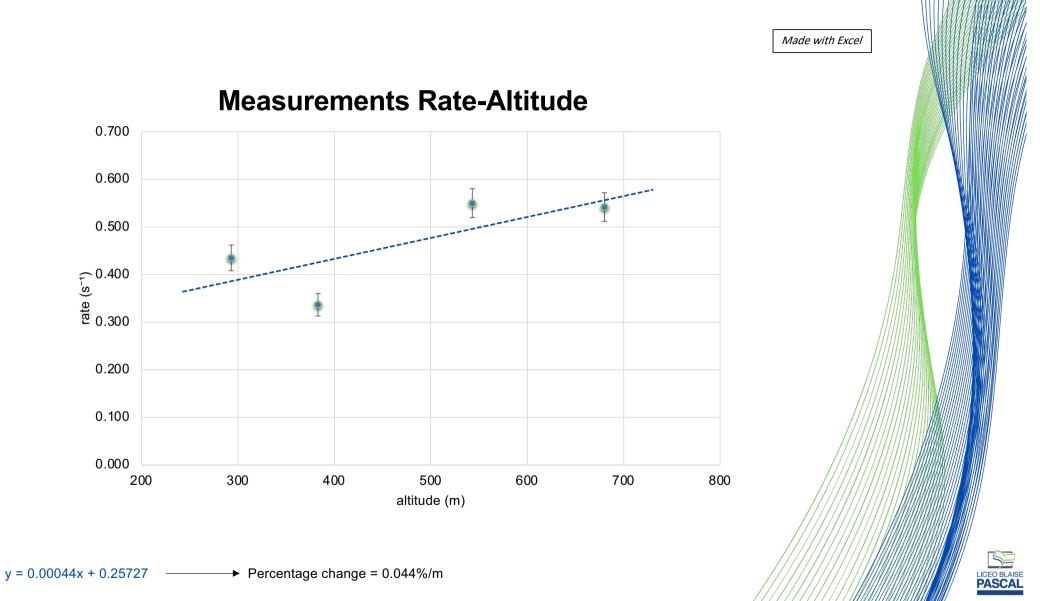
- Catacombe di Albano;
- Lago di Albano;
- Campi di Annibale;
- Pozzo delle Barozze.

The range of altitudes studied goes from 293 to 680 m.a.s.l.

Each measurement was done with the CB perpendicular to the ground and the exposition time was of **10 min**.

We expect higher values at greater altitudes because, with a shorter path to travel, particles have a lower probability to decay before passing through our CB.

MEASUREMENTS AT DIFFERENT ALTITUDES


Made with Excel

Measurements 17/01/2023									
	n°events	error	rate (s⁻¹)	error	altitude (m)	γ rays			
Catacombe Albano Esterno	202	14	0.337	0.024	383	262453			
Campi di Annibale	325	18	0.542	0.030	680	178822			
Lago di Albano	261	16	0.435	0.027	293	322835			
Pozzo delle Barozze	330	18	0.550	0.030	543	198666			

Counts Error = \sqrt{n}

$$Rate = \frac{events}{s}$$

DISCUSSION

An **increase** in flow is observed at **higher altitudes**. This behavior mirrors our theoretical expectation.

The obtained linear fit shows a **percentage increase** in the number of counts of **0.044%/m**. This data can be compared with other research published regarding this topic, that show percentage changes of:

- 0.025%/m [1]
- 0.037%/m [2]
- 0.018%/m [3]

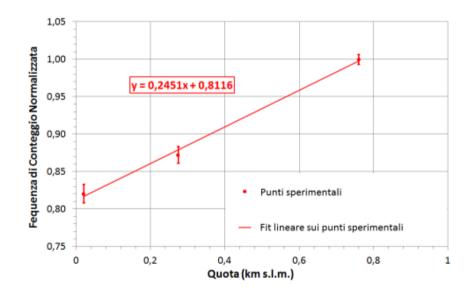
Our result is greater than all those taken as an example and, therefore, probably inaccurate. Taking into account this result, we underline that the data we have collected is not numerous and, therefore, we think that by increasing the statistics our values could very well fall within the range of values measured by other experiments.

MEASUREMENTS IN RELATION WITH Y RAYS

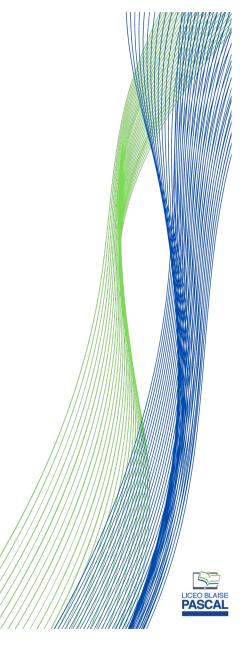
The measurements are the same as in the previous analysis.

The locations of the measurements, being at different altitudes, can't be used for a direct comparison with the concentration of gamma rays.

To overcome this problem we have carried out a **normalization process** of the data collected. In this way, despite still having a certain degree of uncertainty, we were able to compare at least broadly the data obtained with the concentrations of gamma rays.


Each measurement was done with the CB perpendicular to the ground and the exposition time was of **10 min**.

Last year we had already carried out measurements in search of a possible correlation between muon flux and gamma rays. Those data did not show any type of correlation between the quantities analysed.



PROCESS OF NORMALISATION

To normalize the data, the **analysis** carried out by the **EEE collaboration** [1] with a **percentage change of 0.025%/m** was taken as a reference.

The data were normalized to an altitude of 0 m.a.s.l.

MEASUREMENTS IN RELATION WITH $\boldsymbol{\gamma}$ RAYS

Normalised Results								
n°events	error	rate (s⁻¹)	error	γ rays				
183	17	0.304	0.028	262453				
270	20	0.450	0.034	178822				
242	20	0.403	0.033	322835				
				198666				
	n°events 183	n°events error 183 17 270 20 242 20	n°events error rate (s ⁻¹) 183 17 0.304 270 20 0.450 242 20 0.403	n°events error rate (s ⁻¹) error 183 17 0.304 0.028 270 20 0.450 0.034 242 20 0.403 0.033				

Normalised Counts = $Counts(1 - h \cdot 0.025\%/m)$

DISCUSSION

There appears to be **no correlation** between the number of counts and the concentration of gamma rays.

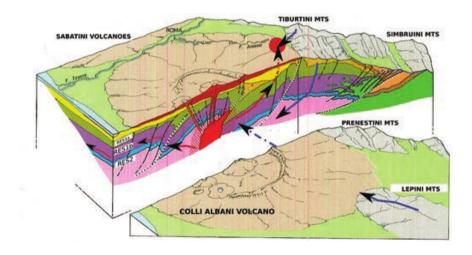
These data confirm the analysis carried out last year.

However, these data are subject to a high level of uncertainty as they were obtained through a normalization process.

Despite that, they still contribute to increasing the information about the possible relationship between muon flux and gamma rays.

CATACOMBE DI SAN SENATORE: HISTORY

The cemetery complex, **near the** church of Santa Maria della Stella, opposite the tomb of the Orazi and Curiazi, is one of the most important suburban catacombs in Rome. The catacomb, **used for burial** from the end of the 3rd to the 5th century, was still considered a pilgrimage destination in the 7th century and continued to be frequented until the 9th century, as a sanctuary for the martyrs buried here. It was rediscovered in 1671. In 1989, following a landslide in front of the access to the catacomb, a new and systematic investigation was undertaken by the Pontifical Commission for Sacred Archaeology.


LICEO BLAISE PASCAL

CATACOMBE DI SAN SENATORE: GEOLOGY

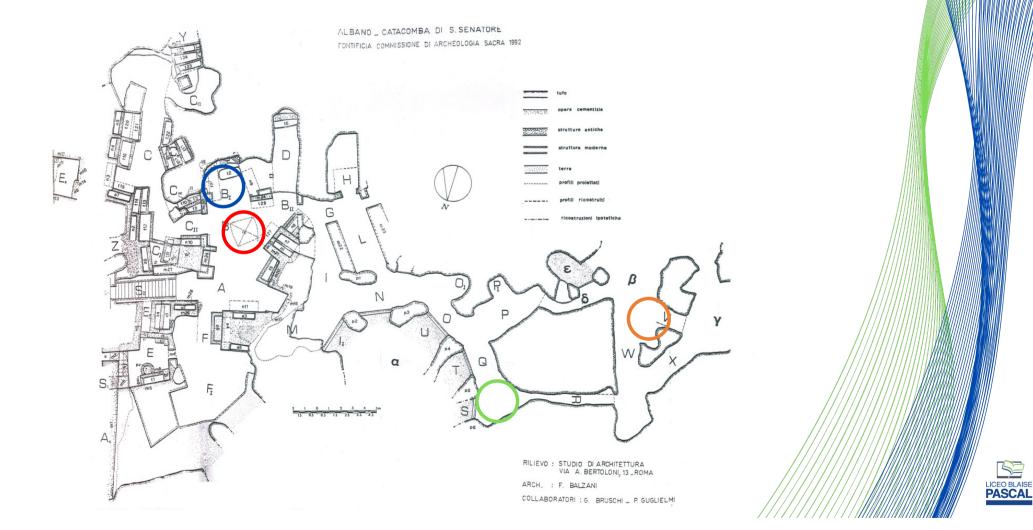
The Catacombs of San Senatore are located in a volcanic area.

The soil covering them is mainly composed of:

- **pozzolana** (consisting of reactive silicon dioxide, aluminum oxide, and to a lesser extent iron oxide);
- tuff;
- granite;
- lava.

CATACOMBE DI SAN SENATORE: MEASUREMENTS

The measurements were taken into 5 different environments:
•outside the catacombs
•in the apse room (under an opening)
•in the apse room
•in a corridor
•in an inner room of the catacombs


The measurements vary in the depth range from 0m to -11m.

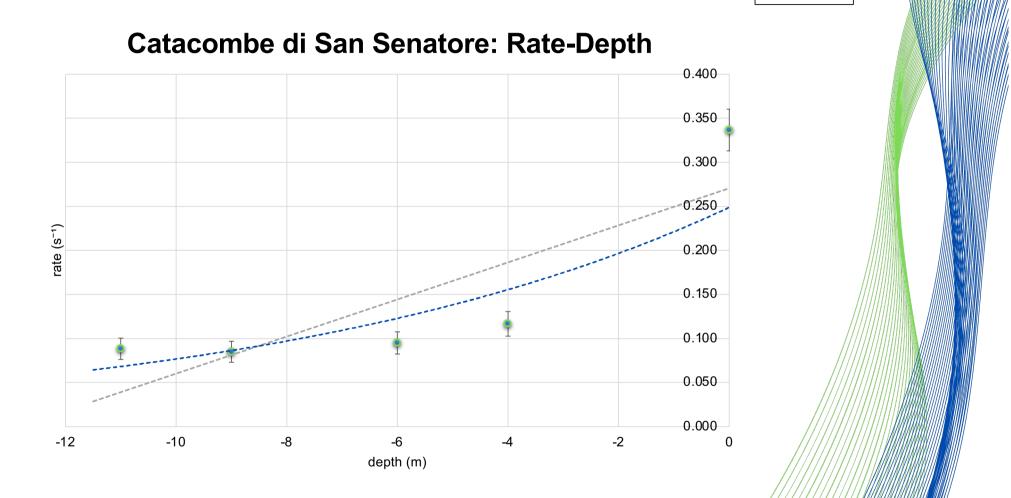
Each measurement was done with the CB perpendicular to the ground and the exposition time was of **10 min**.

We expect lower values at greater depth because, with a longer path to travel and more matter to pass through, particles have a higher probability to decay before passing through our CB.

CATACOMBE DI SAN SENATORE: MAP

CATACOMBE DI SAN SENATORE: DATA

Made with Excel


Measurements at the Catacombe of San Senatore									
	n°events	error	rate (s⁻¹)	error	depth (m)	γ rays	Bq/m³	error	
Outside	202	14	0.337	0.024	0	262453		//	
Apse room (under an opening)	70	8	0.117	0.014	-4	498499	3025	67	
Apse room	57	8	0.095	0.013	-6	498499	3025	67	
Corridor	51	7	0.085	0.012	-9	//	3379	112	
Inner room	53	7	0.088	0.012	-11	716033	3114	112	

Counts Error =
$$\sqrt{n}$$

$$Rate = \frac{events}{s}$$

Made with Excel

y = 0.021x + 0.2705

y = 0.2488e^{0.1176x}

LICEO BLAISE PASCAL

DISCUSSION

From the data collected we can observe a **decrease** in the readings when **underground**. This behavior is expected and due to the layer of earth which shields part of the cosmic rays.

Furthermore, from the data collected, there appear to be only **small** variations in the interval (-6m;-11m).

We believe that this condition may be caused by the **different concentrations of radon** in the measurement locations. Bringing up a meaningful example: the **minimum** reading was obtained at **-9m** in correspondence with the **maximum radon value (3379 Bq/m³)**.

However, the data collected is **insufficient** to prove our hypothesis right. In fact, the apparent inconsistencies with the theory can also be explained taking into consideration the **statistical fluctuations** to which the measured muon flux is subject.

REFERENCES

[1] https://www.iisfermi.edu.it/index.php?option=com_attachments&task=download&id=2034

[2] https://indico.cern.ch/event/596002/contributions/2463935/

[3] F. Blanco, P. La Rocca and F. Riggi, Eur. J. Phys., 30 (2009) 685.

ACKNOWLEDGMENTS

We would like to thank:

- the **EEE Collaboration** for giving us the opportunity to use the Cosmic Box;
- our professors for accompanying us during the measurements;
- the director of the Catacombe di San Senatore for allowing us to carry out measurements in this place and for providing us with data about the concentration of radon.

END OF PRESENTATI ON

Speakers: Giuseppe Roberto 5C Francesca Sabato 4L

Liceo Blaise Pascal, Pomezia (RM)

