

Masterclass: data analysis on eco-mixtures

E. Bossini University and INFN Pisa

Ettore Majorana Foundation and Centre for Scientific Culture - Erice, 17 November 2021

The goals of this Master Class are:

- 1. Achieve a better understanding of gaseous detector working principles (talk of Prof. M. Abbrescia)
- 2. Generate and understand the main characteristics of an efficiency curve
- 3. Understand the impact of temperature-pressure correction
- 4. Understand and compare efficiency results with different gas mixtures
- 5. Learn the basic principle on how the efficiency of an EEE chamber can be measured

The Master Class is composed of 4 exercises with their relative dataset (links available <u>here</u>)

- 1. Comparison of efficiency curves within 2 telescopes with "standard" (98% R134a + 2% SF6) gas mixture
- 2. Comparison of efficiency curves within 2 telescopes with pure Ecofreon (R1234ze, GWP=7)
- 3. Comparison of efficiency curves within 2 telescopes with a new gas mixture (40% R1234ze + 60% CO2)
- 4. Compute the efficiency of one of the EEE chambers. Understand the event selection procedure and its effect on the final measurement.

Efficiency

The efficiency of a detector can be defined, in general terms, as the ratio between the number of detectable particles passing through it and the number of such particles that it was able to detect.

 $Eff = \frac{NUM}{DEN} = \frac{Particles \ detected}{Detectable \ particles \ passing \ through \ the \ detector}$

Two key elements are needed to measure an efficiency:

- A way (hardware + software) to determine the passage of a particle through the detector under study
- ➤ A good definition of "detected"

 $NUM \subset DEN \Rightarrow Eff \leq 1$

Efficiency

The detector efficiency is a function of several parameter. The main ones, treated today, are the applied High Voltage (HV) and gas used.

The efficiency increases with the applied voltage till a plateau, that represents the region where the detector is stable and should be operated, is reached.

Ideally we want to work with detectors that are 100% efficient; our MRPCs are close to this value for an HV above 17000 V (with standard gas mixture).

Extreme

Efficiency

Extreme Energy Events Science inside Schools

The detector efficiency is a function of several parameter. The main ones, treated today, are the applied High Voltage and gas used.

The efficiency increases with the applied voltage till a plateau, that represents the region where the detector is stable and should be operated.

Ideally we want to work with detectors that are 100% efficient; our MRPCs are close to this value of efficiency for an High Voltage above 17000 V (with standard gas mixture).

Exercise 1

A1 - fx TELESCOPE-ID

	A	В	С	D	E	F	G
1	TELESCOPE-ID	HV (V)	P (mbar)	т (К)	Efficiency (%)	Error (%)	NOTE
2	BOLO-01	15276	1013	295.35	0.34	0.01	STANDARD GAS
3	BOLO-01	15887	1013	296.35	0.54	0.01	STANDARD GAS
4	BOLO-01	16489	1013	298.55	0.72	0.01	STANDARD GAS
5	BOLO-01	17085	1014	296.95	0.84	0.01	STANDARD GAS
6	BOLO-01	17592	1005	302.75	0.90	0.01	STANDARD GAS
7	BOLO-01	18292	1013	297.85	0.94	0.01	STANDARD GAS
8	BOLO-01	18842	1013	300.25	0.97	0.01	STANDARD GAS
9	BOLO-01	19404	1015	295.35	0.97	0.01	STANDARD GAS
10	BOLO-01	19871	1015	297.75	0.98	0.01	STANDARD GAS
11	CERN-01	10000	960	298.15	0	0.01	STANDARD GAS
12	CERN-01	10500	960	298.15	0	0.01	STANDARD GAS
13	CERN-01	11000	960	298.15	0.01	0.01	STANDARD GAS
14	CERN-01	11500	960	298.15	0.02	0.01	STANDARD GAS
15	CERN-01	12000	960	298.15	0.04	0.01	STANDARD GAS
16	CERN-01	12500	960	298.15	0.06	0.01	STANDARD GAS
17	CERN-01	13000	960	298.15	0.13	0.01	STANDARD GAS
18	CERN-01	13500	960	298.15	0.23	0.01	STANDARD GAS
19	CERN-01	14000	960	298.15	0.35	0.01	STANDARD GAS
20	CERN-01	14500	960	298.15	0.49	0.01	STANDARD GAS
21	CERN-01	15000	960	298.15	0.62	0.01	STANDARD GAS
22	CERN-01	15500	960	298.15	0.72	0.01	STANDARD GAS
23	CERN-01	16000	960	298.15	0.81	0.01	STANDARD GAS
24	CERN-01	16500	960	298.15	0.87	0.01	STANDARD GAS
25	CERN-01	17000	960	298.15	0.91	0.01	STANDARD GAS
26	CERN-01	17500	960	298.15	0.94	0.01	STANDARD GAS
27	CERN-01	18000	960	298.15	0.95	0.01	STANDARD GAS
28	CERN-01	18500	960	298.15	0.96	0.01	STANDARD GAS
29	CERN-01	19000	960	298.15	0.97	0.01	STANDARD GAS
30	CERN-01	19500	960	298.15	0.98	0.01	STANDARD GAS
31	CERN-01	20000	960	298.15	0.98	0.01	STANDARD GAS

- 1. build the efficiency curve for BOLO-01 alone (HINT)
- 2. build the efficiency curve for CERN-01 alone
- 3. build a unique plot with the data of both the telescopes

Gas detectors are particularly sensible to temperature and pressure variations. To confront data collected in different conditions we can use the effective HV, computed as

$$HV_{eff} = HV * \frac{P_{ref}}{P} * \frac{T}{T_{ref}},$$

with $T_{ref} = 293.15$ K and $P_{ref} = 1010$ mbar.

- 4. repeat (3) correcting the High Voltage for Pressure and Temperature
- 5. looking at this last plot what can you conclude? Are the results in agreement?

Exercises 2 & 3

Data format is the same as exercise 1, with different gas mixtures:

- 1. build the efficiency curve for BOLO-01 alone
- 2. build the efficiency curve for CERN-01 alone
- 3. build a unique plot with the data of both the telescopes (correcting the High Voltage for Pressure and Temperature)
- Compare the curves obtained in the three exercises. Which conclusions can you draw out of the experimental data?
- Which gas mixtures would you suggest, taking into account what have been discussed in the talk of Prof. Abbrescia?

Exercises 4

Extreme Energy Events Science inside Schools

It is now time to try to compute yourself one of the efficiency point for one of the EEE chambers! To add a bit of fun we decided to study a BOTTOM chambers.

 $Eff = \frac{NUM}{DEN} = \frac{Particles \ detected}{Detectable \ particles \ passing \ through \ the \ detector}$

Remember what we need?

- A way (hardware + software) to determine the passage of a particle through the detector under study.
- ➤ A good definition of "detected"

The simple way: a passing particle is determined by a signal in the TOP and MIDDLE chambers. The particle is detected by the BOTTOM chamber if it has generated a signal in coincidence.

Chamber interdistance = 50 cm

Exercises 4

	TOP chamb	er		MID chamb	ber	BOT chamber			
x(cm)	y(cm)	T(ns)	x(cm)	y(cm)	T(ns)	x(cm)	y(cm)	T(ns)	
17.9251	-27.2	306.524	11.2496	-8	308.209	7.6462	11.2	309.193	
70.5312	-4.8	323.459	61.2329	4.8	324.372	53.4228	12.8	332.931	
26.1964	11.2	309.349	36.4901	-24	310.837				
-68.6036	1.6	294.337	-62.7971	17.6	294.618	-58.0305	32	296.991	
-51.3658	-17.6	303.613	-19.1575	11.2	306.401				
-46.8154	-1.6	311.743	-29.9805	8	312.49	-13.5337	17.6	314.005	
-57.2276	1.6	321.361	-33.0141	-1.6	322.978	-7.1821	-3.2	329.585	

The events (one event = one row) in the file are already selected by requiring a signal in the TOP and MIDDLE chambers.

For each chamber you can find the x,y coordinate (in cm) and the time (in ns) of the passing particle. When no signal was detected from the BOTTOM chamber, the corresponding cells are left empty.

In total there 4000 events.

In the simple approach you can count (<u>hint</u>) the number of full cells in any of the column belonging to the BOTTOM chamber, and divide for the total number of event. Try do it. What is the result?

But, is it a correct measurement of the efficiency?

Exercises 4: selection cut

Detectable particles passing through the detector

Particle detectors are not universal, and can have different sensitivity (or no sensitivity) to different types of particles. In our case, since the reference detector are the same as the one under study, we don't need to warry about this!

Is a coincidence of TOP and MIDDLE chambers enough to say that a particle is passed through?

If a particle has passed from the reference chambers, are we sure that it has passed also the BOTTOM chamber?

SOLUTION: we must apply selection cuts!
➤ Time Of Flight
➤ Geometrical acceptance

Why 3 chambers?

In principle a straight track can be reconstructed with only 2 position measurements, so why do we need 3 chambers?

Of course the third chamber adds another timeposition measurement, improving the precision of our experimental setup, but this is not the only reason...

Noise effect

Inside the chambers take place continuous processes that can mimic the signal generated by the particle. We refer to them as "Noise".

Many of this signals are blocked by the front-end electronics (the boards at each end of the chamber), which can "discriminate" them on the base of the signal amplitude.

Nevertheless some noise signals can still be accepted and propagated to the acquisition system and to the trigger.

Noise effect

A double chamber layout will no more be able to correctly reconstruct the particle!

Also other combination can occur..

Multitrack & ghosts

Extreme Energy Events Science inside School

In some cases more particle can pass through the detector at the same time (indeed we are studying showers!).

In this case a double chamber layout will have an ambiguity in the reconstruction, with 4 candidate tracks, where 2 are real and 2 are "ghost"

Exactly the same issue can affect the measurement of the efficiency, where the passage of a particle must be identified using only two chambers!

So...how to be (almost) sure that the two hits measured in the two reference chambers are related to a particle and are not noise or multitrack event?

Selection cuts: TOF

Extreme Energy Events Science inside School

	TOP chamb	ber		MID chamb	ber		BOT chamb	ber	•	TOF
x(cm)	y(cm)	T(ns)	x(cm)	y(cm)	T(ns)	x(cm)	y(cm)	T(ns)		TOF
17.9251	-27.2	306.524	11.2496	-8	308.209	7.6462	11.2	309.193		3.37
70.5312	-4.8	323.459	61.2329	4.8	324.372	53.4228	12.8	332.931		1.826
26.1964	11.2	309.349	36.4901	-24	310.837					2.976
-68.6036	1.6	294.337	-62.7971	17.6	294.618	- <mark>58.0</mark> 305	32	296.991		0.562
-51.3658	-17.6	303.613	-19.1575	11.2	306.401					5.576
-46.8154	-1.6	311.743	-29.9805	8	312.49	-13.5337	17.6	314.005		1.494
-57.2276	1.6	321.361	-33.0141	-1.6	322.978	-7.1821	-3.2	329.585		3.234

First event selection already performed for you:

- > Exactly one hit in the top and middle chamber
- > If more than one hit was present in the bottom, only the best candidate is reported in the file.

This selection get rid of several events seen in the previous slides, but not all of them (i.e. B and C)!

The position of the hit will not help us (there is always one track for two point), but what about the time?

SOLUTION: you can compute the TOF (Time Of Flight) of the particle between the two upper chambers and check if it is compatible with a particle going downward with a speed close to the speed of light.

E.Bossini

Erice - 17 November 2021

BOT extrapolation

Some particles detected from the reference chambers can actually miss the third chambers, or be out of "acceptance". This does not happen when the chamber under study is the middle.

This lead to a second cut that must be applied to the events -> geometrical acceptance cut.

It is easy to compute the projected particle coordinates in the bottom chamber. Such theoretical intercept tell us if the particle crossed the bottom chamber.

			DOT CALIADOIDALION				
Hint: gap between two cham	bers is constant (50 cm)		x(cm)	y(cm)	T(ns)		
	↑ Y		4.5741	11.2	309.894		
Sensitive area of the chamber:			51.9346	14.4	325.285		
70 < x < 70 cm 38 < v < 38 cm			46.7838	-59.2	312.325		
-30 < y < 30 CIII			-56.9906	33.6	294.899		
Take this number as a	0,0 >	x	13.0508	40	309.189		
guideline, you can see what			-13.1456	17.6	313.237		
happen if you change them!			-8.8006	-4.8	324.595		

Definition of "detected"

A "noise" hit can be present also in the bottom chamber, artificially biasing (this time toward an higher value) the measured efficiency. So how should we define the "detected" particle?

Solution: check if the hit measured with in the bottom chamber is where excepted. You can use the "residuals". A residual id the difference between the theoretical intercept point and the measured one. It can be applied to every quantity (space, time, ...)

Hint: you have already computed the track projection in the bottom chamber. The residuals in x and y can be computed either independently or as a radial distance.

Cut suggestion: the spatial resolution of our telescope is ~2 cm. A radial cut of ~10 cm can do the job. Can you explain this last number on the base of spatial resolution? As before, you can play with this value and see the effect on the efficiency measurement.

OP chamb	P chamber MID chamber			er -	BOT chamber			BOT extrapolation			Residuals			
y(cm)	T(ns)	x(cm)	y(cm)	T(ns)	x(cm)	y(cm)	T(ns)	x(cm)	y(cm)	T(ns)	Dx	Dy	Dt	Radial res
-27.2	306.52	11.25	-8	308.21	7.6462	11.2	309.19	4.5741	11.2	309.89	-3.072	0	0.701	3.0721
-4.8	323.46	61.233	4.8	324.37	53.423	12.8	332.93	51.935	14.4	325.29	-1.488	1.6	-7.646	2.1851
11.2	309.35	36.49	-24	310.84				46.784	-59.2	312.33				
1.6	294.34	-62.8	17.6	294.62	-58.03	32	296.99	-56.99	33.6	294.9	1.0399	1.6	-2.092	1.9082
-17.6	303.61	-19.16	11.2	306.4				13.051	40	309.19				
-1.6	311.74	-29.98	8	312.49	-13.53	17.6	314.01	-13.15	17.6	313.24	0.3881	0	-0.768	0.3881
1.0	00100							0.004	1.0		4 8 4 8		1.00	0.0750

Exercise 4: summary

- 1. Calculate the efficiency of the BOTTOM chamber with the simple approach
- 2. Compute the TOF of the particle using the TOP and MIDDLE chambers information. Apply a quality cut.
- 3. Compute the projection of the particle on the BOTTOM chamber. Check if projection is within the geometrical acceptance of the BOTTOM chamber
- 4. Compute the residuals and check compatibility of the measured hit in the bottom w.r.t. to the projection
- 5. Calculate again the efficiency applying one or more of the previous cuts

TO	OP chamb	er	M	Dchambe	er	B	OT chamb	er (В	OT extrap	olation		Residu	als		TOF
x(cm)	y(cm)	T(ns)	x(cm)	y(cm)	T(ns)	x(cm)	y(cm)	T(ns)	x(cm)	y(cm)	T(ns)	Dx	Dy	Dt	Radial res	TOF
17.925	-27.2	306.52	11.25	-8	308.21	7.6462	11.2	309.19	4.5741	11.2	309.89	-3.072	0	0.701	3.0721	3.37
70.531	-4.8	323.46	61.233	4.8	324.37	53.423	12.8	332.93	51.935	14.4	325.29	-1.488	1.6	-7.646	2.1851	1.826
26.196	11.2	309.35	36.49	-24	310.84				46.784	-59.2	312.33			1	1000	2.976
-68.6	1.6	294.34	-62.8	17.6	294.62	-58.03	32	296.99	-56.99	33.6	294.9	1.0399	1.6		1.9082	0.562
-51.37	-17.6	303.61	-19.16	11.2	306.4				13.051	40	309.19				1000	5.576
-46.82	-1.6	311.74	-29.98	8	312.49	-13.53	17.6	314.01	-13.15	17.6	313.24	0.3881	0	-0.768	0.3881	1.494
-57.23	16	32136	-33.01	-16	322.98	-7 182	-3.2	329 59	-8 801	-4.8	324 E	-1.619	-16	-4.99	2 2759	3 234

	Selection cuts	;	Quality outs			
TOF	Acceptance	TOF+ACC	Radial res	BOT not empty		
1	1	1	1	1		
1	1	1	1	1		
1	0	0	0	0		
1	1	1	1	1		
1	0	0	0	0		
1	1	1	1	1		
1		1	1	- 1		

Suggested procedure:

- Calculate relevant quantities (extrapolation, residuals, TOF)
- Generate columns to store the result of the cut (0=rejected, 1 passed)
- The DEN and NUM values can then be computed by summing the values in the corresponding column.

Additional suggestions

Extreme Energy Events
SCIENCE INSIDE SCHOOLS

$f_{\mathcal{K}}$	=IF(OF	=IF(OR(J6="",G6=""),"",J6-G6)											
Е	F	G	н	I	J	к	L	м	N	ο			
Dchamb	er	В	OT chamb)er	B	OT extrap	olation		Residu	als			
y(cm)	T(ns)	x(cm)	y(cm)	T(ns)	x(cm)	y(cm)	T(ns)	Dx	Dy	Dt	R		
-8	308.21	7.6462	11.2	309.19	4.5741	11.2	309.89	-3.072	0	0.701			
4.8	324.37	53.423	12.8	332.93	51.935	14.4	325.29	-1.488	1.6	-7.646			
-24	310.84			1	46.784	-59.2	312.33	=IF(OR(JI					
17.6	294.62	-58.03	32	296.99	-56.99	33.6	294.9	1.0399	1.6	-2.092			
11.2	306.4				13.051	40	309.19						
8	312.49	-13.53	17.6	314.01	-13.15	17.6	313.24	0.3881	0	-0.768			
-1.6	322.98	-7.182	-3.2	329.59	-8.801	-4.8	324.6	-1.619	-1.6	-4.99			

Additional suggestions

E	Extreme
	Energy
	Events
	Science inside Schools

	Q	R	S	т	U	v	
	TOF		Selection cuts	;	Qua	ality outs	
4	TOF	TOF	Acceptance	TOF+ACC	Radial res	BOT not empty	
1	3.37	=IF(AND(Q4<	(\$Z\$22, Q4>\$2	2\$23),1,0)	1	1	
1	1.826	IF(logical	test. Ivalue	if truel. [va	alue if fa	lsel) 1	
)	2.976					0	
2	0.562	1	1	1	1	1	
)	5.576	1	0	0	0	0	
1	1.494	1	1	1	1	1	
3	3.234	1	1	1	1	1	

=IF(AND(Q4<\$Z\$22, Q4>\$Z\$23),1,0)

Z22 and Z23 are de cells which contain the upper and lower limit of the TOF

Additional suggestions

Extreme Energy Events Science inside School

		Selection cuts		Qua	ality outs	DEN	NUM
	TOF	Acceptance	TOF+ACC	Radial res	BOT not empty		
371	1	1	1	1	1	=R4*S4*I	J4*V4
26	1	1	1	1	1		
6	1	0	0	0	0		
32	1	1	1	1	1		
76	1	0	0	0	0		
94	1	1	1	1	1		
84	1	1	1	1	1		

At the end, just sum the values in the column "NUM" and divide by the sum of the column "DEN"

Final remarks

Be careful when applying cuts. All the cuts applied to the NUM, must be applied also to the DEN! IF an event is discarded by a selection cut it must be also discarded in the computation of the "detected events".

Few final (optional) questions:

Which cut rise the efficiency and which instead lower it? What is the impact of each cut, how much the final measure is affected? Which one is the most relevant? Can you suggest other cuts that must/should applied?

What can you tell us about the uncertainty of the measure? How the procedure followed and the choice of the cut parameter affect the measure? They can be reduced by increasing the number of collected events?

Enjoy!