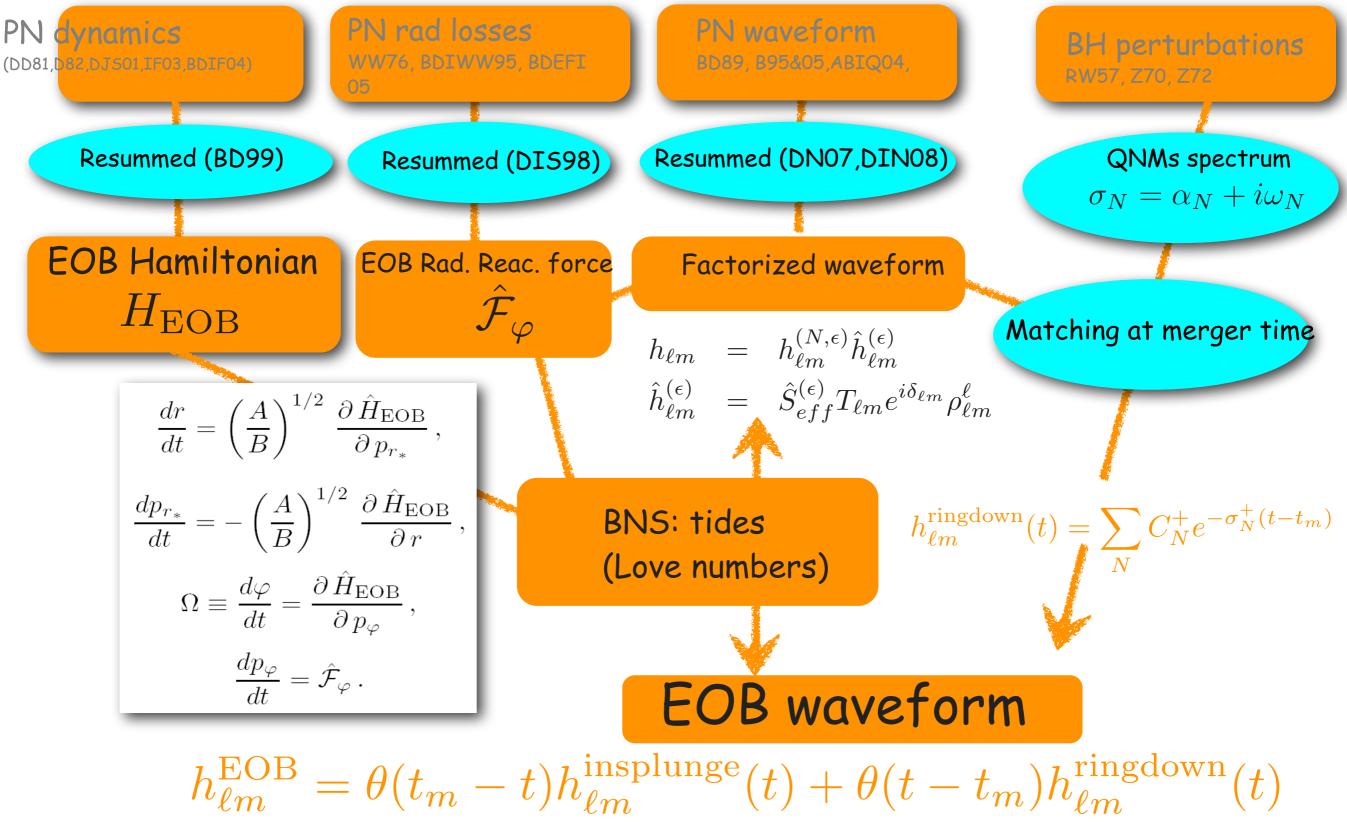
EOB/NR: WHERE ARE WE GOING?

Alessandro Nagar Centro Fermi, INFN, Sezione di Torino and IHES

(Buonanno-Damour 99, 00, Damour-Jaranowski-Schäfer 00, Damour 01, Damour-Nagar 07, Damour-Iyer-Nagar 08)

key ideas:

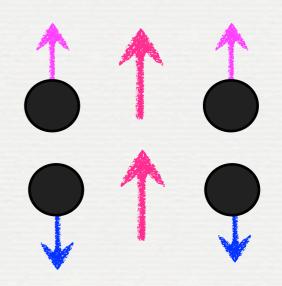

(1) Replace two-body dynamics (m_1, m_2) by dynamics of a particle $(\mu \equiv m_1 m_2/(m_1 + m_2))$ in an effective metric $g_{\mu\nu}^{eff}(u)$, with

$$u \equiv GM/c^2R$$
, $M \equiv m_1 + m_2$

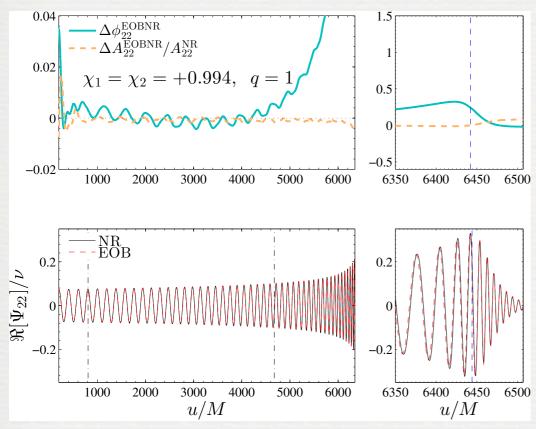
(2) Systematically use RESUMMATION of PN expressions (both $g_{\mu\nu}^{eff}$ and \mathcal{F}_{RR}) based on various physical requirements

(3) Require continuous deformation w.r.t. $\nu \equiv \mu/M \equiv m_1 m_2/(m_1 + m_2)^2$ in the interval $0 \le \nu \le \frac{1}{4}$

STRUCTURE OF THE EOB FORMALISM


SPINNING BBHS

Spin-orbit & spin-spin couplings

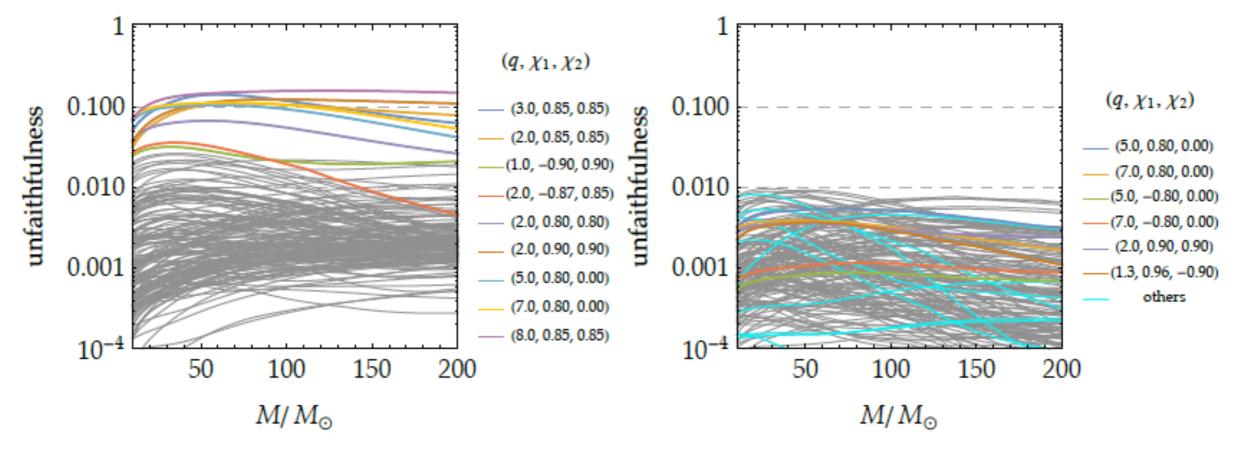

(i) Spins aligned with L: repulsive (slower) L-o-n-g-e-r INSPIRAL

(ii) Spins anti-aligned with L: attractive (faster) shorter INSPIRAL

(iii) Misaligned spins: precession of the orbital plane (waveform modulation)

 $\chi_{1,2} = \frac{c \,\mathbf{S}_{1,2}}{Gm_{1,2}^2}$

EOB/NR agreement: sophisticated (though rather simple) model for spin-aligned binaries


Damour&Nagar, PRD90 (2014), 024054 (Hamiltonian) Damour&Nagar, PRD90 (2014), 044018 (Ringdown) Nagar, Damour, Reisswig & Pollney, PRD 93 (2016), 044046

AEI model, SEOBNRv4, Bohe et al., arXiv:1611.03703v1 (PRD in press)

A. Nagar - 24 October 2016 - CP3

SEOBNRv2

SEOBNRv4

grey: below 3%

AEI model: arXiv: 1611.03703v1

Strong recalibration of the state-of-the-art SEOBNRv2 model (used for O1) to be faithful towards a set of 141 NR simulations (about 100 new ones)

More NR simulations are essential to "calibrate & improve" the model

$$\begin{split} d_{\rm SO} &= +147.481449 \chi^3 v^2 - 568.651115 \chi^3 v \\ &+ 66.198703 \chi^3 - 343.313058 \chi^2 v \\ &+ 2495.293427 \chi v^2 - 44.532373 \,, \end{split} \\ d_{\rm SS} &= +528.511252 \chi^3 v^2 - 41.000256 \chi^3 v \\ &+ 1161.780126 \chi^2 v^3 - 326.324859 \chi^2 v^2 \\ &+ 37.196389 \chi v + 706.958312 v^3 \end{split}$$

$$-36.027203 v + 6.068071$$
,

SO & SS EFFECTS IN EOB HAMILTONIAN

New way of combining available knowledge within some Hamiltonian [Damour&Nagar, PRD 2014]

$$\hat{H}_{\text{eff}} = \frac{g_S^{\text{eff}}}{r^3} \mathbf{L} \cdot \mathbf{S} + \frac{g_{S^*}^{\text{eff}}}{r^3} \mathbf{L} \cdot \mathbf{S}^* + \sqrt{A(1 + \gamma^{ij} p_i p_j + Q_4(p))}$$

with the structure

$$\begin{split} g_S^{\text{eff}} &= 2 + \nu (\text{PN corrections}) + (\text{spin})^2 \text{corrections} \\ g_{S^*}^{\text{eff}} &= \left(\frac{3}{2} + \text{test mass coupling}\right) + \nu (\text{PN corrections}) + (\text{spin})^2 \text{corrections} \\ A &= 1 - \frac{2}{r} + \nu (\text{PN corrections}) + (\text{spin})^2 \text{corrections} \\ \gamma^{ij} &= \gamma_{\text{Kerr}}^{ij} + \nu (\text{PN corrections}) + \dots \end{split}$$

$$\mathbf{S} = \mathbf{S}_1 + \mathbf{S}_2 = M^2 (X_1^2 \chi_1 + X_2^2 \chi_2) \qquad X_i = m_i / M$$
$$\mathbf{S}^* = \frac{m_2}{m_1} \mathbf{S}_1 + \frac{m_1}{m_2} \mathbf{S}_2 = M^2 \nu (\chi_1 + \chi_2) \qquad -1 \le \chi_i \le 1$$

THE TWO TYPES OF SPIN-ORBIT COUPLINGS $\hat{H}_{SO}^{\text{eff}} = G_S \mathbf{L} \cdot \mathbf{S} + G_{S^*} \mathbf{L} \cdot \mathbf{S}^* \qquad G_S = \frac{1}{r^3} g_S^{\text{eff}}, \quad G_{S^*} = \frac{1}{r^3} g_{S^*}^{\text{eff}}$

In the Kerr limit, only S-type gyro-gravitomagnetic ratio enters:

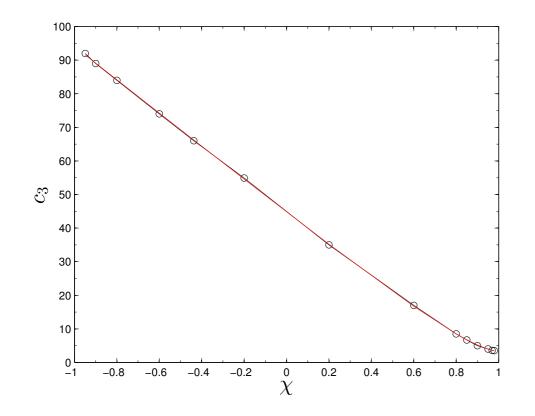
$$g_{S}^{\text{eff}} = 2 \frac{r^{2}}{r^{2} + a^{2} \left[\left(1 - \cos^{2} \theta\right) \left(1 + \frac{2}{r}\right) + 2\cos^{2} \theta \right] + \frac{a^{4}}{r^{2}} \cos^{2} \theta} = 2 + \mathcal{O}[(\text{spin})^{2}]$$

PN calculations yield (in some spin gauge)[DJS08, Hartung&Steinhoff11, Nagar11, Barausse&Buonanno11]

$$\begin{split} g_{S}^{\text{eff}} &= 2 + \frac{1}{c^{2}} \left\{ -\frac{1}{r} \frac{5}{8} \nu - \frac{33}{8} (\mathbf{n} \cdot \mathbf{p})^{2} \right\} & \quad \text{``Effective'' NNNLO SO-coupling} \\ &+ \frac{1}{c^{4}} \left\{ -\frac{1}{r^{2}} \left(\frac{51}{4} \nu + \frac{\nu^{2}}{8} \right) + \frac{1}{r} \left(-\frac{21}{2} \nu + \frac{23}{8} \nu^{2} \right) (\mathbf{n} \cdot \mathbf{p})^{2} + \frac{5}{8} \nu \left(1 + 7\nu \right) (\mathbf{n} \cdot \mathbf{p})^{4} \right\}, \quad + \frac{1}{c^{6}} \frac{\nu c_{3}}{r^{3}} \\ g_{S^{*}}^{\text{eff}} &= \frac{3}{2} + \frac{1}{c^{2}} \left\{ -\frac{1}{r} \left(\frac{9}{8} + \frac{3}{4} \nu \right) - \left(\frac{9}{4} \nu + \frac{15}{8} \right) (\mathbf{n} \cdot \mathbf{p})^{2} \right\} \\ &+ \frac{1}{c^{4}} \left\{ -\frac{1}{r^{2}} \left(\frac{27}{16} + \frac{39}{4} \nu + \frac{3}{16} \nu^{2} \right) + \frac{1}{r} \left(\frac{69}{16} - \frac{9}{4} \nu + \frac{57}{16} \nu^{2} \right) (\mathbf{n} \cdot \mathbf{p})^{2} + \left(\frac{35}{16} + \frac{5}{2} \nu + \frac{45}{16} \nu^{2} \right) (\mathbf{n} \cdot \mathbf{p})^{4} \right\} + \frac{1}{c^{6}} \frac{\nu c_{3}}{r^{3}} \end{split}$$

The NR-informed effective parameter makes the spin-orbit coupling stronger or weaker with respect to the simple analytical prediction

40 NR SXS Datasets (public in the fall of 2013 and used before for SEOBNRv2)

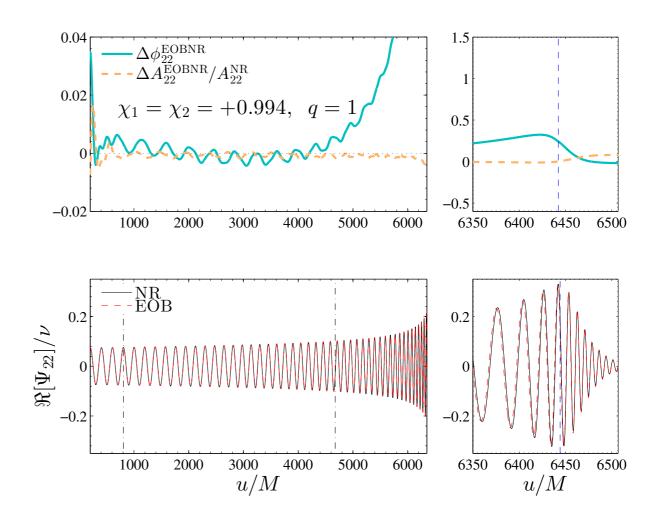

TABLE I: EOB/NR phasing comparison. The columns report: the number of the dataset; the name of the configuration in the SXS catalog; the mass ratio $q = m_1/m_2$; the symmetric mass ratio ν ; the dimensionless spins χ_1 and χ_2 ; the phase difference $\Delta \phi^{\text{EOBNR}} \equiv \phi^{\text{EOB}} - \phi^{\text{NR}}$ computed at NR merger; the NR phase uncertainty at NR merger $\delta \phi^{\text{NR}}_{\text{mrg}}$ (when available) measured taking the difference between the two highest resolution levels (see text); the maximum value of the unfaithfulness $\bar{F} \equiv 1 - F$ as per Eq. (22). The $\Delta \phi^{\text{EOBNR}}$'s in brackets for $\chi_1 = \chi_2 > +0.85$ were obtained using Eq. (21) for $\Delta t^{\text{NQC}}(\chi)$.

	1 ()						0 1 ()	(, , ,	
#	Name	N orbits	q	ν	χ_1	χ_2	$\Delta \phi_{\rm mrg}^{\rm EOBNR}$ [rad]	$\delta \phi_{ m mrg}^{ m NR}$ [rad]	$\max(\bar{F})$
1	SXS:BBH:none	14	1	0.25	0.0	0.0	-0.016		0.00087
2	SXS:BBH:0066	28	1	0.25	0.0	0.0	+0.010		0.00068
3	SXS:BBH:0002	32.42	1	0.25	0.0	0.0	+0.073	0.066	0.00101
4	SXS:BBH:0007	29.09	1.5	0.24	0	0	+0.05	0.018	0.00201
5	SXS:BBH:0169	15.68	2	$0.\bar{2}$	0	0	-0.15	0.02	0.00045
6	SXS:BBH:0030	18.22	3	0.1875	0	0	-0.074	0.087	0.00035
7	SXS:BBH:0167	15.59	4	0.16	0	0	-0.059	0.52	0.00035
8	SXS:BBH:0056	28.81	5	$0.13\bar{8}$	0	0	-0.089	0.44	0.00038
9	SXS:BBH:0166	21.56	6	0.1224	0	0	-0.198		0.00037
10	SXS:BBH:0063	25.83	8	0.0987	0	0	-0.453	1.01	0.00292
11	SXS:BBH:0185	24.91	9.98911	0.0827	0	0	-0.0051	0.376	0.00066
12	SXS:BBH:0004	30.19	1	0.25	-0.50	0.0	-0.017	0.068	0.00403
13	SXS:BBH:0005	30.19	1	0.25	+0.50	0.0	+0.08	0.28	0.00052
14	SXS:BBH:0156	12.42	1	0.25	-0.95	-0.95	+0.32	2.17	0.00058
15	SXS:BBH:0159	12.67	1	0.25	-0.90	-0.90	+0.06	0.38	0.00047
16	SXS:BBH:0154	13.24	1	0.25	-0.80	-0.80	+0.11		0.00044
17	SXS:BBH:0151	14.48	1	0.25	-0.60	-0.60	-0.049	0.14	0.00042
18	SXS:BBH:0148	15.49	1	0.25	-0.44	-0.44	+0.14	0.72	0.00043
19	SXS:BBH:0149	17.12	1	0.25	-0.20	-0.20	+0.45	0.90	0.00085
20	SXS:BBH:0150	19.82	1	0.25	+0.20	+0.20	+0.94	0.99	0.00275
21	SXS:BBH:0152	22.64	1	0.25	+0.60	+0.60	+0.01	0.36	0.00068
22	SXS:BBH:0155	24.09	1	0.25	+0.80	+0.80	-0.39	0.26	0.00110
23	SXS:BBH:0153	24.49	1	0.25	+0.85	+0.85	+0.06		0.00059
24	SXS:BBH:0160	24.83	1	0.25	+0.90	+0.90	+0.41 (+0.41)	0.80	0.00117
25	SXS:BBH:0157	25.15	1	0.25	+0.95	+0.95	+0.37 (+0.83)	1.18	0.00295
26	SXS:BBH:0158	25.27	1	0.25	+0.97	+0.97	+0.37 (+0.49)	1.26	0.00325
27	SXS:BBH:0172	25.35	1	0.25	+0.98	+0.98	+0.99 $(+0.46)$	2.02	0.00422
28	SXS:BBH:0177	25.40	1	0.25	+0.99	+0.99	+0.22 (+0.48)	0.40	0.00507
29	SXS:BBH:0178	25.43	1	0.25	+0.994	+0.994	+0.24 (+0.23)	-0.53	0.00506
30	SXS:BBH:0013	23.75	1.5	0.24	+0.5	0	+0.31		0.00058
31	SXS:BBH:0014	22.63	1.5	0.24	-0.5	0	-0.15	0.15	0.00046
32	SXS:BBH:0162	18.61	2	$0.\bar{2}$	+0.6	0	-0.20	0.71	0.00027
33	SXS:BBH:0036	31.72	3	0.1875	-0.5	0	+0.08	0.065	0.00040
34	SXS:BBH:0031	21.89	3	0.1875	+0.5	0	+0.12	0.034	0.00023
35	SXS:BBH:0047	22.72	3	0.1875	+0.5	+0.5	-0.034		0.00030
36	SXS:BBH:0046	14.39	3	0.1875	-0.5	-0.5	+0.36		0.00054
37	SXS:BBH:0110	24.24	5	$0.13\bar{8}$	+0.5	0	+0.24		0.00016
38	SXS:BBH:0060	23.17	5	$0.13\bar{8}$	-0.5	0	+0.21	0.8	0.00034
39	SXS:BBH:0064	19.16	8	0.0987	-0.5	0	+0.026	0.8	0.00042
40	SXS:BBH:0065	33.97	8	0.0987	+0.5	0	+1.33	-3.0	0.00040

Several equal-mass, equal-spin data

Just a few unequalmass, unequal-spin data

SPIN-ORBIT NR CALIBRATION

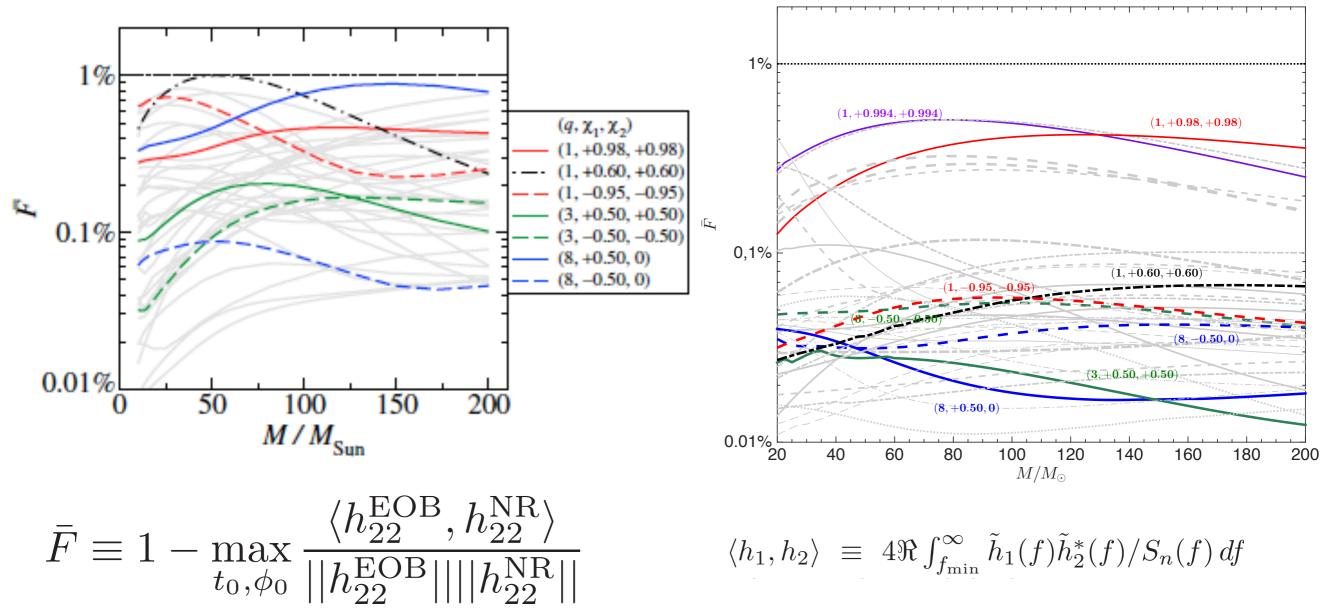


+ interpolating fits for NQC functioning point, ringdown coefficients etc. (Achille's heel...still ok..)

$$\tilde{a}_{1,2} = X_{1,2}\chi_{1,2}$$
$$X_{1,2} \equiv \frac{m_{1,2}}{M}$$

Quasi-linear function of the spins

$$c_{3}(\tilde{a}_{1}, \tilde{a}_{2}, \nu) = p_{0} \frac{1 + n_{1}(\tilde{a}_{1} + \tilde{a}_{2}) + n_{2}(\tilde{a}_{1} + \tilde{a}_{2})^{2}}{1 + d_{1}(\tilde{a}_{1} + \tilde{a}_{2})} + (p_{1}\nu + p_{2}\nu^{2} + p_{2}\nu^{3})(\tilde{a}_{1} + \tilde{a}_{2})\sqrt{1 - 4\nu} + p_{4}(\tilde{a}_{1} - \tilde{a}_{2})\nu^{2},$$

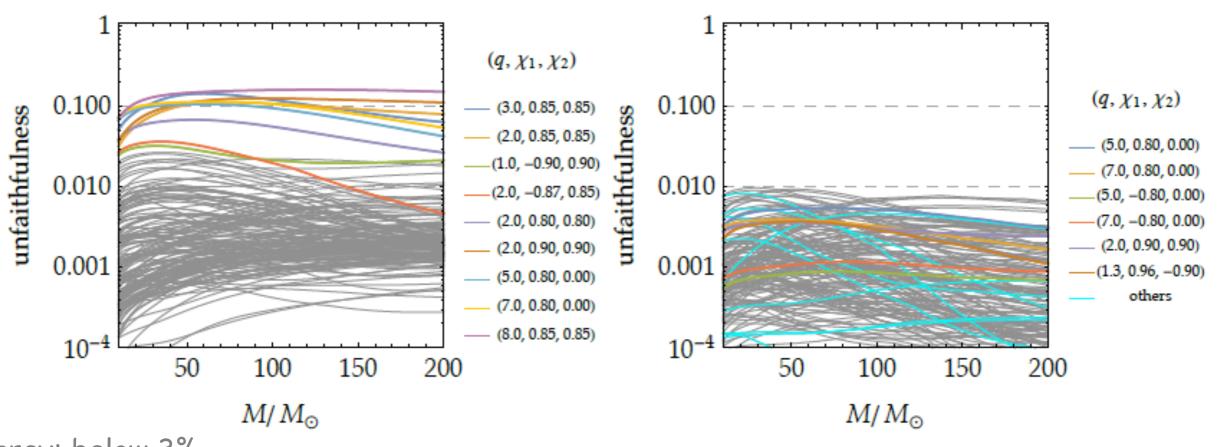


IHES EOBNR MODEL

EOB/EOBNR UNFAITHFULNESS (40 NR SXS dataset)

IHESEOB_spin

SEOBNRv2



Nagar, Damour, Reisswig & Pollney, PRD 93 (2016), 044046

ROBUSTNESS?

SEOBNRv2

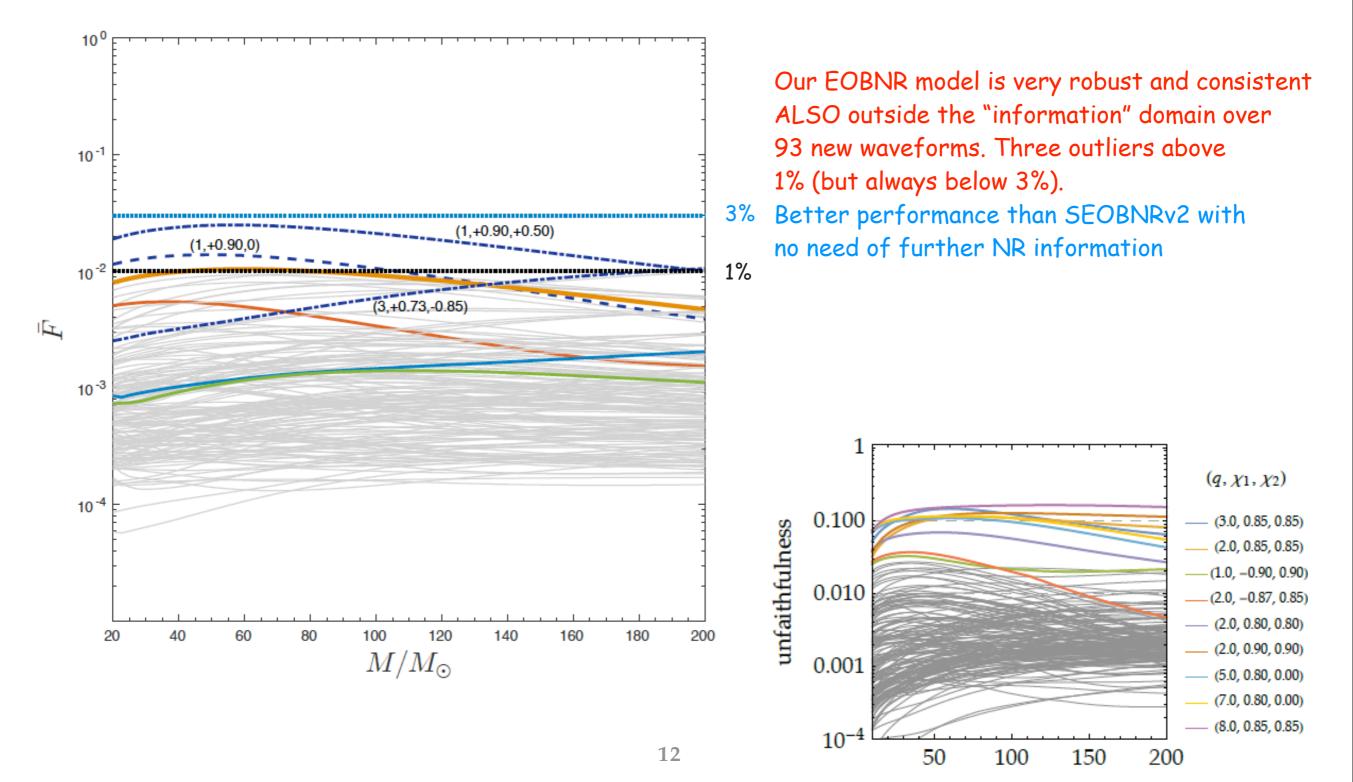
SEOBNRv4

grey: below 3%

AEI model: Bohe et al. arXiv: 1611.03703v1 4 parameters

Strong recalibration of the state-of-the-art SEOBNRv2 model (used for O1) to have it faithful towards a set of 141 NR simulations (about 100 new ones)

More NR simulations seem essential to "calibrate & improve" the AEI EOBNR model

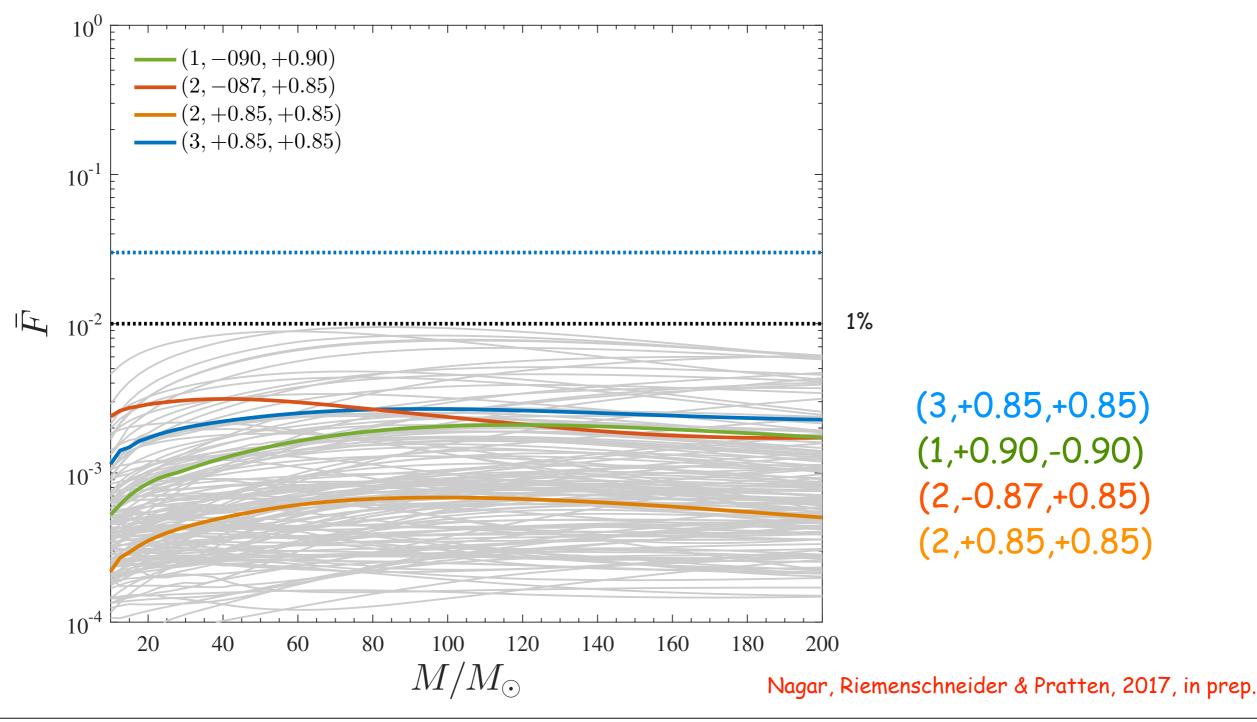

$$\begin{split} d_{\rm SO} &= +147.481449 \chi^3 v^2 - 568.651115 \chi^3 v \\ &+ 66.198703 \chi^3 - 343.313058 \chi^2 v \\ &+ 2495.293427 \chi v^2 - 44.532373 \,, \end{split}$$

$$\begin{split} d_{\rm SS} &= +528.511252 \chi^3 v^2 - 41.000256 \chi^3 v \\ &+ 1161.780126 \chi^2 v^3 - 326.324859 \chi^2 v^2 \\ &+ 37.196389 \chi v + 706.958312 v^3 \\ &- 36.027203 v + 6.068071 \,, \end{split}$$

BUT THIS IS NOT GENERAL...

October 31st: 93 NR datasets released publicly. These are those used to calibrate SEOBNRv4 (+ others non public) First use them to cross-check our model.

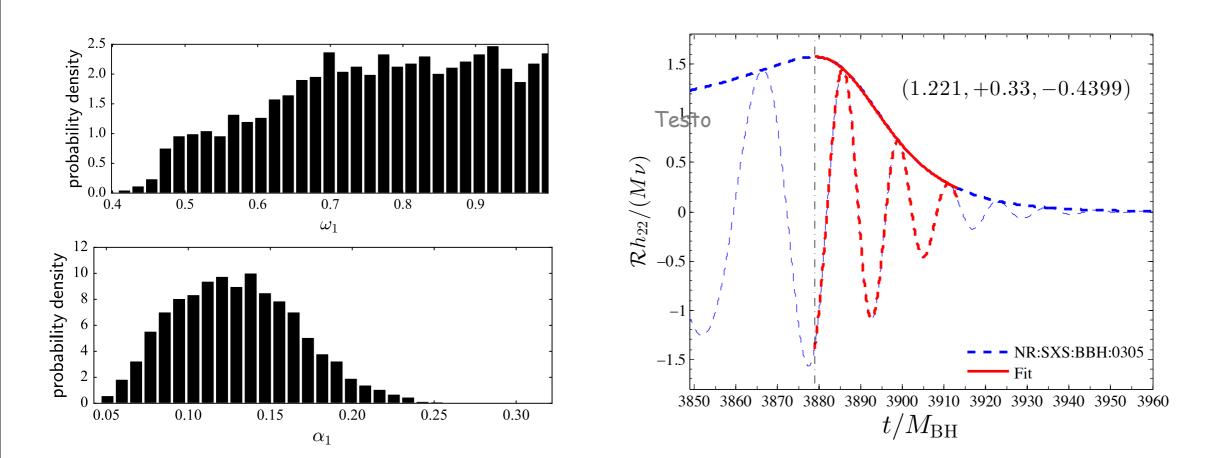
Interpolating NR fits for NQC point & ringdown. Previous NR data plus (5,-0.90,0)



MINIMAL RECALIBRATION

Best value of the c3 parameter for the three outliers. Check phase agreement in the time-domain to be within the NR error bar. New fit to the best values to determine new values of the parameters of the unequal-mass sector.

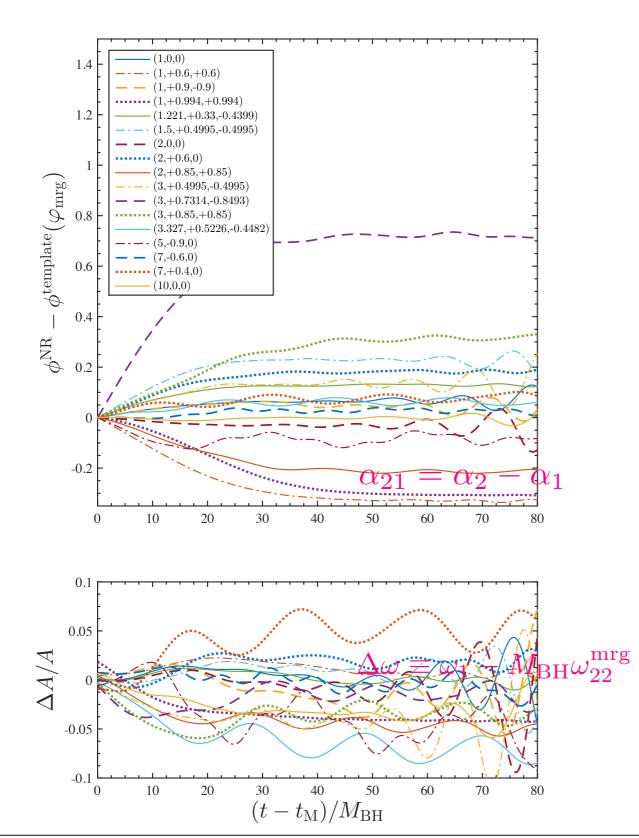
Recalibration with 3 more NR datasets; 90 datasets as a cross/check.

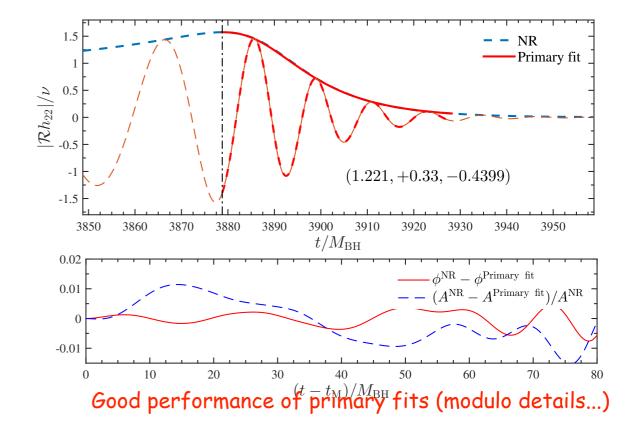

Done by hand, no need of sophisticated mechanisms/algorithms. IMPROVABLE: NQC & RINGDOWN FITS USING MORE NR DATA

POSTMERGER DESCRIPTION

Damour&AN, PRD 2014: motivated because the "standard" QNMs attachment is far from trivial for high-spins Originally conceived for EOB; useful also as a stand-alone postmerger template Del Pozzo & AN, arXiv: 1606.03952

ANALYTIC TEMPLATE for the FULL POSTMERGER signal coming from a suitable fit of NR data.

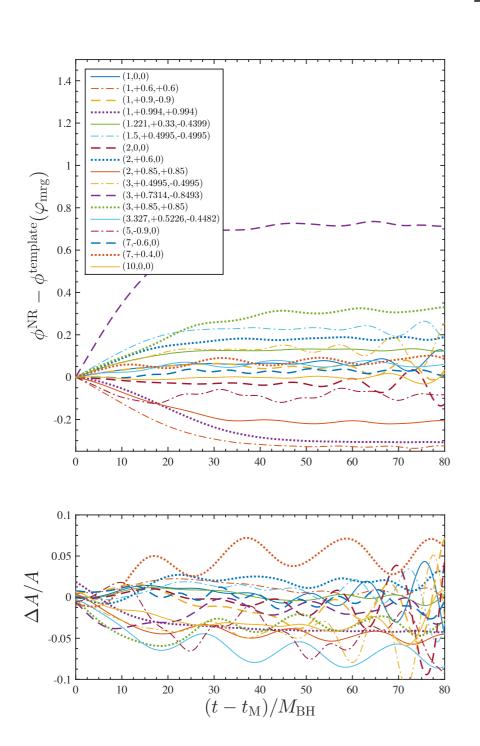

$$\sigma_1 = \alpha_1 + i\omega_1$$

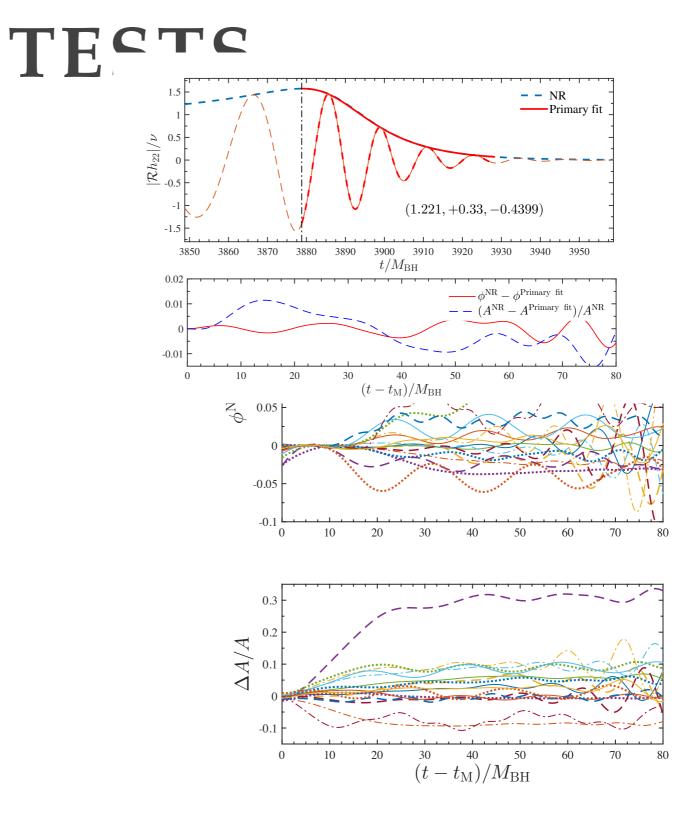

EFFECTIVE FIT

15

Damour&AN 2014

Factorize the fundamental




Do this for various SXS dataset and then build up a (simple-minded) interpolating fit

Black-list:

- (1) the structure due to m<0 modes is not included (yet)
- (2) large-mass ratios/high spin: amplitude problems
- (3) problems are extreme for high-spin EMRL waves
- (4) more flexible fit-template needed
- (5) improve/check over all datasets (SXS & BAM for large mass-ratios & consistency with EMRL)

Phase alignment@mrg

Time&phase shift alignment (as template)

WAVEFORM RECONSTRUCTION

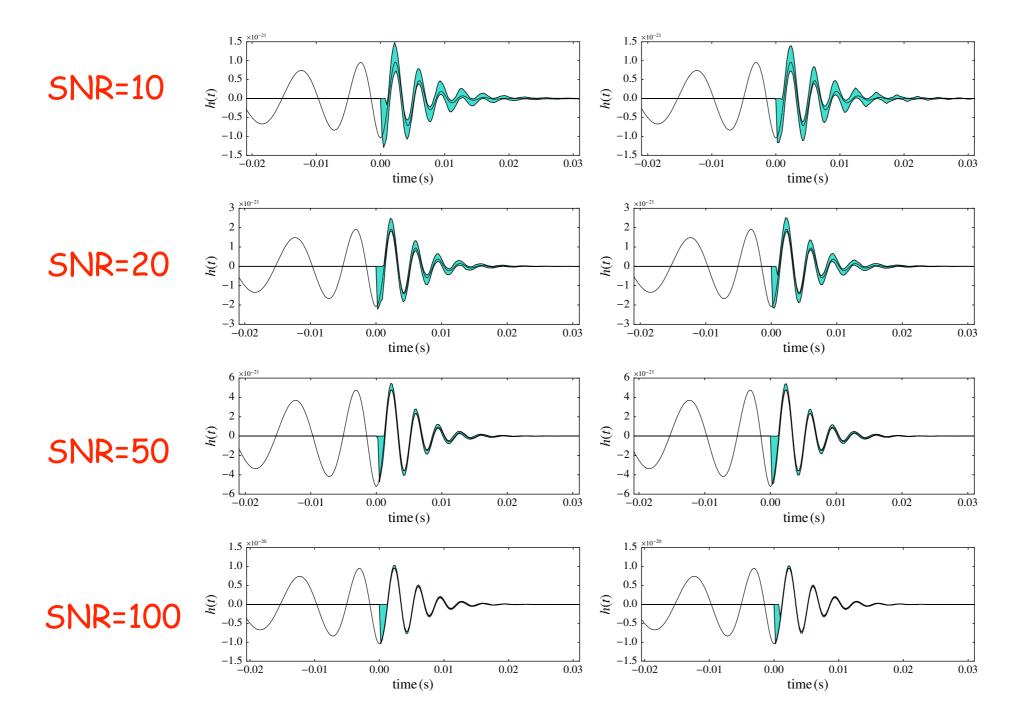
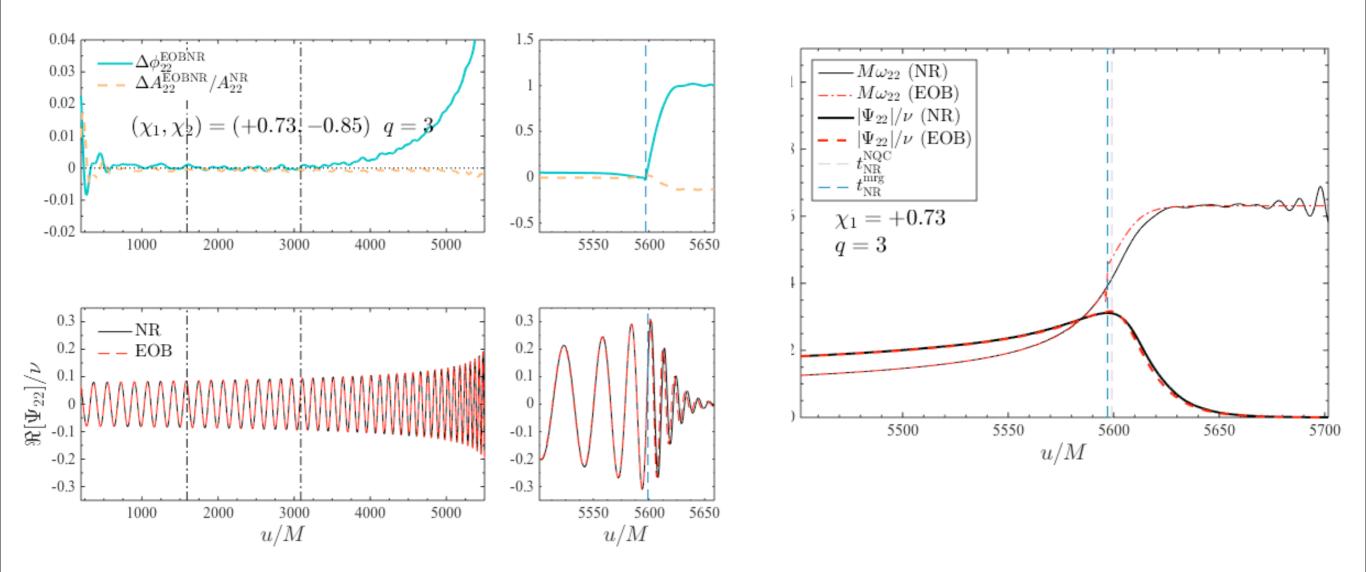



FIG. 4: From top to bottom right panels: GE case reconstructed post-merger waveform and corresponding 90% confidence region for SXS:BBH:0305 with post-merger SNR = 10, 20, 50 and 100. On the left hand side CO reconstructed post-merger waveform and corresponding 90% confidence region for SXS:BBH:0305 with post-merger SNR = 10, 20, 50 and 100. In all cases, the post-merger waveform is reconstructed very accurately, with uncertainty decreasing as the post-merger SNR increases.

WHAT TO IMPROVE?

More NR data sets to be included both in the NQC-functioning-point fit as well as in the postmerger fit (see Del Pozzo & Nagar). This is an easily solvable problem (in progress).

It is reasonable to aim at 0.1% level unfaithfulness. This is easily at reach of the model. More precise "calibration" and/or improved theoretical structures.