Extreme Energy Events A (very) brief introduction

2021-04 online Meeting

Why Extreme Energy Events

It's a long journey In time and space...

Victor Hess after his 1912 balloon flight, during which he discovered cosmic rays from space. **©** National Geographic.

<u>1927</u> Dimitry Skobelzyn pictured the first tracks out of cosmic rays particles

<u>1932</u> Carl Anderson

the **POSITRON**

<u>1933</u> Patrick Blackett and Giuseppe Occhialin POSITRON-ELECTRON pair

<u>1937</u> Seth Neddermeyer and Carl Anderson The MUON

Fotografia stereoscopica di uno sciame (P. Blackett & G. Occhialini, 1933)

Nowadays the cosmic rays are fundamental tools to observe the far Universe in search for new Physics

Crab Nebula (Observed for the first time in 1054 DC in China)

A supernova remnants after the death of an ancient star

There heavy elements are produced and cosmic rays are accelerated by shock waves

一一日没三年三月乙已出東南方大中祥将四八十一日没三年三月之已出東京方教總與八年五月一日一月丁水出天開東南可數丁成分一次月乙已出東北方近濁有芒甚至丁已凡十一日没至和元年五月已去出天開東南可數丁成公子五年二月丁水出天開東南可數丁成公子五年二月丁水出天開東南可數丁成公子五年二月丁水出天開東南可數丁成公子五年三月子女乃散總與八年五月一日一日没三年三月子女乃散總與八年五月一日一日没三年三月之已出東南方大中祥将四

5,5 ly

100 kly

Introduction

EEE is an extended and inhomogeneous array for the search of Long Distance Correlations Extensive Air Showers

Secondary cosmic ravs

+ solar activity-CR relation + EAS study + CR anisotropies + climate-CR relations

Expected by several models

Nuclei photodisintegration
Massive Dark Matter
topological defects
many others

Introduction

Present status:

Total 60 telescopes

54 inside high schools buildings

2 at CERN

4 inside INFN and Universities

over a surface of $3\,10^5\,km^2$

covering 10° in latitude and longitude

Mostly organized In <mark>12 clusters</mark> for EAS detection

The Multigap Resisitve Plate Chamber (see M.P. Panetta talk)

Same technology used for the Time Of Flight (TOF) measurement at ALICE (LHC)

 $6~gas~gaps~250\text{--}300~\mu\text{m}$

 $C_{2}H_{2}F_{4}$ (98%) / SF₆ (2%) mixture

18-20 kV working voltage

24 strips per chamber, 2.5 cm pitch

The signal induced on the strips is the sum of the 6 gaps signals

The EEE station

The EEE station

Some EEE telescope installations

Data Treatment

Data are automatically sent to INFN CNAF, reconstructed and processed by DQM

How to make a clever use of the DATA QUALITY MONITOR

(and understanding the path to a discovery)

OUTLOOK

The path to a scientific discovery is a long, arduous and intricated. Each step hides unknown sources of mistake. Human inclination to crave for understanding the Universe is as well a strong source of will-driven mirages.

Let's try to a make the path together, step by step

Data Quality Monitoring (DQM)

Insights

DQM

NETSTATUS

Telescopes status

School	Day	Time	Name of the last trasferred File	Number of Files trasferred today	Last Entry in the e-logbook of the Schools	Name of the last File analyzed by DQM	DQM daily report	RATE of Triggers for the last Run in DQM	RATE of Tracks for the last Run in DQM	Link DQM
ALTA-01 [Event Display]	sab 15 febbraio	11:08	ALTA-01-2020- 02-15-00032.bin	0 [History]	*	ALTA-01-2020- 02-15-00032.bin	*	31.0	10.0	ALTA-01
ANCO-01 [Event Display]	dom 08 marzo	19:08	ANCO-01-2020- 02-25-00002.bin	0 [History]	*	ANCO-01-2020- 02-25-00022.bin	*	22.0	15.0	4NCO-01
AREZ-01 [Event Display]	BOLO-02	-2017-11-19-00012	EEE Extreme Energy Events La Scienza nelle Scuole BOLO-02-2	2017-11-19-00012 EEE Las	smo Energy Events * cienza netlo Scuole	AREZ-01-2021- 03-12-00004.bin	*	14.0	11.0	AREZ-01
BARI-01 [Event Display]	1 01>2×10			••••	*	BARI-01-2021- 03-16-00012.bin	*	10.0	9.0	BARI-01

19/11/17 01:35:00

RUN SUMMARY

Rate of events 50

40

30 20Ē

10

DST file path: /home/noferini/recoold/temp2/BOLO-02-2017-11-19-00012_dst.root
 Unique run identifier: 6397500012

19/11/17 01:30:00

Smallest event timestamp: 343448477.007 s UTC

19/11/17 01:25:00

- Largest event timestamp: 343449500.929 s UTC
- Run duration (largest smallest timestamp): 1023.923 s
 Total number of events: 47932
- Number of events with hits: 47912
- Number of events with a track: 44637
- Number of "no hits" (GPS?) events: 20
 Number of "no hit" events: 20
- Number of malformed events: 0
- Number of events out of order: 1

WEATHER STATION

- · Readout at 343448400.000 s UTC (77.007 s before the start of the run)
- Outdoor temperature: 9.00 deg C Indoor temperature: 21.00 deg C
- Pressure: 1008 hPa

ALARM SUMMARY

PLOT	ALARM	STATUS	OUTPUT	LIMITS	
RateHitEvents	y_values	Clean	48.67 +- 0.89	[4 / 8 - 80 / 100]	
DeltaTime	exp_fit_lambda	Clean	46.97 +- 0.22	[4 / 8 - 80 / 100]	
HitMultTop	x_average	Clean	1.4788 +- 0.0036	[0.500 / 0.750 - 2 / 3]	
HitMultMid	x_average	Clean	1.3551 +- 0.0034	[0.500 / 0.750 - 2 / 3]	
HitMultBot	x_average	Clean	1.4167 +- 0.0034	[0.500 / 0.750 - 2 / 3]	
HitMultTotal	x_average	Clean	4.2499 +- 0.0074	[1.50 / 2.50 - 6 / 9]	
ClusterMultTop	x_average	Clean	1.0924 +- 0.0020	[0.500 / 0.750 - 2 / 3]	
ClusterMultMid	x_average	Clean	1.0924 +- 0.0021	[0.500 / 0.750 - 2 / 3]	
ClusterMultBot	x_average	Clean	1.0928 +- 0.0020	[0.500 / 0.750 - 2 / 3]	
ClusterMultTotal	x_average	Clean	3.2760 +- 0.0048	[1.50 / 2.50 - 6 / 9]	
ChiSquare	x_average	Warning	1.718 +- 0.018	[1/2-6/10]	
RateTrackEvents	y_values	Clean	41.51 +- 0.82	[4 / 8 - 80 / 100]	
FractionTrackEvents	y_values	Clean	0.9358 +- 0.0046	[0.400 / 0.800 - 1 / 1]	
Phi					

fraction of even

19/11/17 01:35:00

0.4

0.2

19/11/17 01:25:00

19/11/17 01:30:00

ANCO-01 DQM list

			,	
2020-02-25	2020-02-12	2020-02-11	2020-02-10	2020-02-09
2020-02-08	2020-02-07	2020-02-06	020-02-05	2020-02-04
2020-02-03	2020-02-02	2020-02-01	2020-01-31	2020-01-30
2020-01-29	2020-01-25	2020-01-24	2020-01-23	2020-01-22
2020-01-21	2020-01-18	2020-01-17	2020-01-16	2020-01-15
2020-01-14	2020-01-13	2020-01-12	2020-01-11	2020-01-10
2020-01-09	2020-01-08	2020-01-07	2020-01-06	2020-01-05
2020-01-04	2020-01-03	2020-01-02	2020-01-01	2019-12-31
2019-12-30	2019-12-29	2019-12-28	2019-12-27	2019-12-26
2019-12-25	2019-12-24	2019-12-23	2019-12-22	2019-12-21
2019-12-20	2019-12-19	2019-12-18	2019-12-17	2019-12-16
2019-12-15	2019-12-14	2019-12-13	2019-12-12	2019-12-11
2019-12-10	2019-12-09	2019-12-08	2019-12-07	2019-11-30
2019-11-29	2019-11-28	2019-11-27	2019-11-26	2019-11-25
2019-11-24	2019-11-23	2019-11-22	2019-11-21	2019-11-20
2019-11-17	2019-11-16	2019-11-15	2019-11-14	2019-11-13
2019-11-12	2019-11-11	2019-11-10	2019-11-09	2019-11-08
2019-11-07	2019-11-06	2019-11-05	2019-11-04	2019-11-03
2019-11-02	2019-11-01	2019-10-31	2019-10-30	2019-10-29
2019-10-28	2019-10-27	2019-10-25	2019-10-24	2019-10-23
2019-10-22	2019-10-21	2019-10-20	2019-10-19	2019-10-18
2019-10-17	2019-10-16	2019-10-15	2019-10-14	2019-09-13

Run quality

RUN DQM

EEE DQM run report

Good tracks rate $\chi^2 < 10$

Fraction of good events (with a good track)

Run quality

RUN DQM

RUN SUMMARY

- DST file path: /home/analisi/eeetmp/CAGL-02-2014-12-10-00039_dst.root
- Unique run identifier: 1029000039
- Smallest event timestamp: 250601988.021 s UTC
- Largest event timestamp: 250603243.596 s UTC
- Run duration (largest smallest timestamp): 1255.575 s

Total number of events: 50000

- Number of events with hits: 47341
- Number of events with a track: 42232
- Number of "no hits" (GPS?) events: 2520
- Number of "no hit" events: 139
- Number of malformed events: 0
- Number of events out of order: 0

WEATHER STATION

- Readout at 250600800.000 s UTC (1188.021 s before the start of the run)
- Outdoor temperature: 14.60 deg C
- Indoor temperature: 23.90 deg C
- Pressure: 1018 hPa

Secondi dal 1/1/2007

DQM

Run quality

RUN DQM

DQM histograms and alarms Plenty of information not to be left unused!

ALARM SUMMARY

Рьот	ALARM	STATUS	OUTPUT	LIMITS
RateHitEvents	y_values	Clean	31.41 +- 0.72	[10 / 20 - 60 / 80]
DeltaTime	exp_fit_lambda	Clean	33.32 +- 0.16	[5 / 10 – 50 / 75]
HitMultTop	x_average	Clean	1.0810 +- 0.0019	[0.500 / 0.750 – 2 / 3]
HitMultMid	x_average	Clean	1.0925 +- 0.0021	[0.500 / 0.750 – 2 / 3]
HitMultBot	x_average	Clean	1.0929 +- 0.0021	[0.500 / 0.750 – 2 / 3]
HitMultTotal	x_average	Clean	3.2614 +- 0.0052	[1.50 / 2.50 – 6 / 9]
ClusterMultTop	x_average	Clean	1.0810 +- 0.0019	[0.500 / 0.750 – 2 / 3]
ClusterMultMid	x_average	Clean	1.0925 +- 0.0021	[0.500 / 0.750 – 2 / 3]
ClusterMultBot	x_average	Clean	1.0927 +- 0.0021	[0.500 / 0.750 – 2 / 3]
ClusterMultTotal	x_average	Clean	3.2662 +- 0.0052	[1.50 / 2.50 – 6 / 9]
ChiSquare	x_average	Clean	2.735 +- 0.020	[1 / 2 - 6 / 10]
RateTrackEvents	y_values	Clean	29.85 +- 0.70	[10 / 20 – 60 / 80]
FractionTrackEvents	y_values	Clean	0.9642 +- 0.0042	[0.750 / 0.800 – 1 / 1]
Phi				
Theta				
TimeOfFlight				
TrackLength				

Let's start to think what we need to come to a measurement and (possibly) to a discovery

Insights

Two important parameters: - the telescope efficiency

- the spurious coincidence rate

The **efficiency** is the Probabilty for a MRPC to detect a particle. On a high amount of particles travelling across a chamber the efficiency is

Eff =

N of particles detected

Number of particles actually travelled through the chamber

The **spurious rate** is the rate of signals seen by a MRPC (or a telescope) NOT CORRELATED with a real particle passing through the MRPC.

The time window keeps into account
Signal speed along the strips (20 ns)
Time of Flight between chambers

Time of Flight between chambers

Spurious coincidences for a set of MRPC of a EEE telescope

 $P(A \cap B) = P(A)P(B)$ non correlated

Spurios coincs in MRPC 2 in ΔT **ν2·ΔT** Spurious coincs in MRPC 3 in ΔT **ν3·ΔT**

Spurious rate: $v(doubles)=2\cdot(v1\cdot\Delta T)\cdot(v2\cdot\Delta T)/\Delta T$ $= 2\cdot v1\cdot v2\cdot\Delta T$

 $v(triples) = 3 \cdot v 1 \cdot v 2 \cdot v 3 \cdot \Delta T^2$ ~3 \cdot (2 \cdot 10^4 Hz)^3 \cdot (2 \cdot 10^{-8} s)^2 = ~ 10^{-2} Hz

Coincidences are fundamental tool to decrease the rate of spurious and allowing for the observation of real particles

Insights

v(Ntuples) = N·v1·v2·v3·....vN x ΔT^{N-1}

Dark Rate & Spurious

where N comes from the firing MRPCs

N1 x N2 x N3 Possible triples

Hands on!

Dark Rate & Spurious

	SpuriousCoincider File Edit View Inser	nces 🕁 🗈 📀 rt Format Data To	ools Add-ons	Help Last edi	t was seconds :	ago	
k.	N 😋 🖶 🏲 100% 🗸	\$ % .0 .00 123	Default (Ari.	🕶 10 💌	в <i>I</i> \$	A ♦ ⊞ 53 -	≣
F18	• fx						
	А	В	С	D	Е	F	
1	efficiency of 1 MRPC	Spurious rate	Nch	т		average muon rate	
2	0.9	1.00E+04	3	3.00E-08		100	
3							
4							
5	efficiency of a telescope	spurios triple rate					
6	0.729	2.70E-03					
_							

Try to:

- evaluate the spurious telescope rate as a function of N chambers per telescope
- evaluate the efficiency of a telescope as a function of N chambers per telescope
- make plots showing this two quantitites vs N

- study the good track/false triggers over 1 year of data taking vs N -----Define a proposal: which is the optimal number of MRPC for a telescope?