EEE 00	EEE telescope O	Simulation tool	Resolution 0000	Efficiency and Rate	Conclusions 00000
CER FER Junu	Anno and a state a	INFN		Extreme Energy Events Extremes stre	ka nin ≥ nin 2 nin trip 2 nin trip 2 nin trip

A simulation tool for MRPC telescopes of the EEE project

Giuseppe Mandaglio for EEE Collaboration

Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi Dipartimento MIFT - University of Messina and INFN-Sezione di Catania

The XV workshop on Resistive Plate Chambers and Related Detectors (RPC2020)

University of Rome "Tor Vergata", February 14, 2020

	pe Sinuadon tool		Efficiency and Kate	Conclusions
00 0	000000	0000	00000	0 0000

Outline

EEE Project (Extreme Energy Events)

EEE telescope

Simulation tool

Detector resolution evaluation

Efficiency estimation, exp. - sim. data rate comparison

Conclusions

DO	O EEE telescope	Simulation tool	Resolution 0000	Efficiency and Rate	00000
E	Extreme Energy Events Science inside Schools	CENTRO FERMI Junio Jeruiz	MUSEO STORICO DELLA FISICA E CENTRO STUDI E RICERCHE ENRICO FERMI	INFN)
	CERN			ISTRUZIONE, DELL'A RICERCA	
Å				Extreme Energy	
				$E \approx 10^{15} - 10^{15}$	⁹ eV

· FRANKSKI ANK

EEE O telescope

Simulation too

Resolution

- The EEE network is the largest and long-living MRPC-based system
- 62 telescopes
- Educational and scientific purposes with a large research program (see Fabrizio Coccetti Talk).

More than 100
billion of candidate
tracks (χ² < 10) on
tape

	EEE telescope			Efficiency and Rate	
00	•	000000	0000	00000	<u>00000</u>

MRPC (Multigap Resistive Plate Chamber) telescope

Picture of CATA-01 telescope sited at UniCT

Top view of a chamber

5/27

		Simulation tool		Efficiency and Rate	
00	0	000000	0000	00000	00000

Simulation tool purposes

- Absolute and angular efficiency
- Absolute single- μ rates (to be compared to the telescope response)
- Effective comparison to world data parametrization
- Description (and compensation) of surrounding materials
- easy way to compare telescopes with different parameters (e.g. distance between the chambers)
- Cross check of data quality and working conditions of different telescopes
- Machine independent tool for simulation

	Simulation tool	Efficiency and Rate	
	000000		

GEMC

7/27

000000 00000 00000	
	00000

Simulation flow chart scheme

	Simulation tool	Efficiency and Rate	
	0000000		

Events Generator

arXiv:1509.06176v1

Improved Gaisser parametrization for Flux(E_{μ} , θ) to include Earth curvature (all latitudes) and low energy muons (<100 GeV)

Semi-sphere generation such as to obtain a flat distribution on a plane surface

- good agreement with previous data, low-high energies, small-large angles our implementation checked on data
- Generation split in 3 E_µ intervals: [0.2 2 GeV]; [2-10 GeV] and [10 -100 GeV]
- Normalization factor for absolute flux: $1.06 \ \mu \ \mathrm{cm}^{-2} \ \mathrm{min}^{-1}$.
- Simulation ready to be interfaced with other events generator like CORSIKA.

イロト イポト イヨト イヨト

	Simulation tool	Efficiency and Rate	
	0000000		

Geometry and GUI

Figures thanks to M.P. Panetta

00 0	0000000	0000	00000	<u>0</u> 0000

Qualitative exp.-sim. data comparison

Experimental data

Simulated data

4 D > 4 B

= ♥) Q (♥

Generated vs. reconstructed events

The reconstruction codes used for experimental data efficiently identify the muon direction of the simulated data in all investigated energy ranges.

Angular and Spatial Resolution Estimation - E_{μ} =10-100 GeV

Differences between the generated and reconstructed angles, X and Y positions in middle chamber. High energy muons make the effects due to air medium negligible, then we use them to estimate the detector resolution.

Experimental and simulated space resolution estimation - E_{μ} =10-100 GeV

14/27

			Resolution	Efficiency and Rate	
00	0	0000000	0000	00000	<u>00000</u>

Resolution leak for low energy muons - E_{μ} =0.2-100 GeV

The resolution leak in cosmic rays detection is due to low energy muons interaction with medium. This effect does not depend on intrinsic detector resolution (see **2018 JINST 13 P08026**).

About 12% of events contribute to "bad" position resolution (fit component in red - contributed by low energy muons) overimposed to good resolution (fit componend in green).

		Simulation tool	Resolution	Efficiency and Rate	Conclusions
00	, en	0000000	0000	00000	00000

Resolution in shielding conditions - E_{μ} =0.2-100 GeV

Detector working shielded by 5 floor, parametrized with 150 cm of concrete.

 $\sigma_{\theta} = 1.78^{\circ} (1.1^{\circ} \text{ NS})$ $\sigma_X = 1.89 \text{ cm} (1.55 \text{ cm NS})$ $\sigma_Y = 2.48 \text{ cm} (2.17 \text{ cm NS})$

This prove once more that the cosmic rays resolution leak only depend by the effect of material surrounding the detector.

		Efficiency and Rate	
		●0000	

Map efficiency correction - TORI-03

We estimate the tracking efficiency map (20Xbins×24YBins) of chambers by looking for the missing hit (bin map) in the reconstructed tracks normalized to the good tracks (no missing hit), and the counting efficiency map by correcting the bin rates with detector acceptance and then by normalising the rate of each bin to the average rate.

Total efficiency maps are obtained as the product of the tracking and counting efficiency.

In the figures are represented the total efficiency map for top, middle and bottom chambers for TORI-03 telescope. The procedure is able to show the efficiency reductions due to gas leak in the middle chamber and the malfunction of a strip in bottom chamber.

		Efficiency and Rate	
		00000	

Experimental and simulated polar angle distributions

The comparison is made by normalizing data to simulation entries to check the shape agreement.

		Efficiency and Rate	

Exp-Sim agreement I

The experimental and simulated data, without correction (open circles) and with the efficiency correction (full circles) are in agreement within 5-6% in both cases for polar angle below 35 degrees, with efficiency correction the agreement remains within 10% above 35 degrees.

Exp-Sim agreement II

Simulated sample without detector efficiency corrections.

Red triangles represent the polar angle distribution of data collected by TORI-3, while the blue circles are the same distribution obtained by simulating a sample with the same statistic but without detector efficiency information

Exp-Sim agreement III

Two independent methods (same strategy different algorithms) were developed to obtain the efficiency maps. The efficiencies corrections improve the agreement data/Sim also at larger polar angles in both procedures.

No normalization has been applied in the comparison, just the detector efficiency corrections.

Simulated data corrected for detector efficiency

Results by S. Grazzi

		Efficiency and Rate	Conclusions

Conclusions

- A simulation tool based on GEMC implemented for the EEE project has been presented.
- Estimations of detector resolutions and studies on the effect of the structures surrounding the telescopes are presented.
- Agreement Data-MC within 10% up to the limit of the detector acceptance are already achieved and further investigations to improve the detector description are in progress.
- We plan to interface the present tool of simulation with Corsika event generator for the investigation of extensive showers of cosmic rays.

		Efficiency and Rate	
			00000

Spares

<ロト<合ト<当ト<当ト<当ト<当ト 23/27

		Efficiency and Rate	
			00000

Tracking efficiency

triple vertical coincidence

GENO-01

24/27

			Efficiency and Rate	
	0000000	0000	00000	00000

Tracking efficiency

Spurious inefficiency estimation

TORI-03

A D > A B > A

25/27

		Efficiency and Rate	
			00000

Counting efficiency map - TORI-03

		Efficiency and Rate	Conclusions

Hit map acceptance correction - TORI-03

