

MUSEO STORICO DELLA FISICA

CENTRO STUDI E RICERCHE ENRICO FERMI

Recent results from EEE and PolarquEEEst

F. Noferini on behalf of the EEE Collaboration

Outline

Just a selection of recent results from EEE:

- Long distance correlations (past and future strategies)
- polarquEEEst 2018/2019 activity

Long Distance Correlations (LDC)

Possible physical mechanisms:

- Primaries from the same source (limited by the presence of magnetic fields)
- Interaction of a primary with the interstellar medium
- Photodisintegration of primary cosmic rays (nuclei) in the solar field (GZ effect)

Long Distance Correlation: different strategies

- 1. Selecting Extensive Air Shower (EAS) via coincidences between telescopes in the same city and looking for EAS coincidences at very large distance (low background, limited number of telescopes pair)
- 2. Selecting EAS from multi-muon events with a single telescope and looking for EAS coincidences at very large distance (background depending on the number of muons required, all telescopes available)
- Looking for all possible coincidences with single muons at very large distance (background is an issue)
 → multi-messenger (triggered) analysis: external triggers allows to strongly reduce background!

So far we explore (1, published) and (2, preliminary results). (3) under investigation how to control background (e.g. by requiring N-telescopes > 2)

LDC by correlating all muons (3)

NEW APPROACH

- Consider all possible correlation between 2, 3, ..., N and look for events outside the expected spurious rate
- Integrate over long data taking (> months)
- So far we applied the procedure on the Run-5 data
 - A reasonable agreement observed between raw data and spurious expected trend over 9 order of magnitude
 - An upper limit on the number of such events may be established

PolarquEEEst trip

GOAL: Cosmic ray flux up to extreme latitude

- 2018 PolarquEEEst2018
 - 3 detectors (POLA-01, POLA-02, POLA-03)

- PolarquEEEst2018 → expedition with Nanuq boat (July-September) + 2 telescopes at fixed latitude (Bra(TO), Nessoden(Norvegia))
- 2019
 - (Dec 18 Apr 19) → measurements at several latitudes (Italy, Germany, CERN)

A 4° detector built (POLA-04) (PolarquEEEst2019) → 3 detectolrs installed in Ny Ålesund (Svaldbard)

PolarquEEEst trip

GOAL: Cosmic ray flux up to extreme latitude

- 2018
 - 3 detectors (POLA-01, POLA-02, POLA-03)
 - PolarquEEEst2018 \rightarrow expedition with Nanuq boat (July-September) + 2 telescopes at fixed latitude (Bra(TO), Nessoden(Norvegia)) Verso PolarquEEEst2019
- 2019
 - (Dec 18 Apr 19) \rightarrow measurements at several latitudes (Italy, Germany, CERN)

A 4° detector built (POLA-04) (PolarquEEEst2019) \rightarrow 3 detectors installed in Ny Ålesund (Svaldbard)

PolarquEEEst trip

GOAL: Cosmic ray flux up to extreme latitude

- 2018
 - 3 detectors (POLA-01, POLA-02, POLA-03)
 - PolarquEEEst2018 → expedition with Nanuq boat (July-September) + 2 telescopes at fixed latitude (Bra(TO), Nessoden(Norvegia))
- 2019
 - (Dec 18 Apr 19) → measurements at several latitudes (Italy, Germany, CERN)

A 4° detector built (POLA-04) (PolarquEEEst2019) → 3 detectolrs installed in Ny Ålesund (Svaldbard)

PolarquEEEst2019

The detector

- 2 scintillator planes
- Plane distance = 11 cm
- 4 + 4 tiles: 30 x 20 cm²
- 2 SiPM per tile
- Efficiency > 96%
- Trigger condition: signal coincidence in both planes (at least 3 SiPM in total)

Students (Italy, Switzerland and Norway) at CERN

Seasonal effect

2% variation along the year (seasonal effect) \rightarrow consistent with previous measurements [*].

Minimum during summer period due to temperature increase in atmosphere \rightarrow volume increase \rightarrow Secondaries (pion) produced at higher altitude \rightarrow Muon decay favored (no effect observed with *neutron monitor*).

[*] R. R. S. de Mendonca, The Astrophysical Journal, 830:88

POLA-01 trip in Italy/Germany

POLA-01 in Cefalù

Our stops:

- Bologna
- Vigna di Valle
- Erice
- Catania

POLA-01 on Etna

POLA-01 in Lampedusa

Germany: Frankfurt, Hannover

A.H. Compton, Phys Rev 43 387 (1933) G. Lemaître and M.S. Vallarta, Phys Rev 42 (1932)

CR flux vs latitude

CR flux as a function of latitude. Normalized to POLA-02 e POLA-03 to subtract seasonal effects

More on POLA-01 trip...

During its trip the polar detector (POLA-01) visited Catania. Several vertical coincidences between POLA-01 and one EEE telescope in Catania University were measured.

Sensitivity at 2.5 m:

- ➤ few cm in 1 day data taking
- few mm in few months data taking

Such campaign of measurements allowed to demonstrate the capability of POLA-EEE telescopes to monitor the stability of civil structure on a long-time scale.

PolarquEEEst2019@Ny Ålesund

Installation at Ny Ålesund

The force Polar landed in Ny Ålesund

"Dirigibile Italia" station with CNR staff

POLA-01 towords the "Climate Change Tower" CNR

First 3 months of data taking

MUSEO STORICO DELLA FISICA E CENTRO STUDI E RICERCHE ENRICO FERMI

Extreme Energy Events Science inside Schools

Recent publications

2019

- Panetta M.P. et. al. (EEE Collaboration), <u>The new trigger/GPS module for the EEE project</u>, Nuclear Instruments and Methods in Physics Research A936 (2019) 376, doi: 10.1016/j.nima.2018.10.127.
- Abbrescia M. et. al. (EEE Collaboration), <u>The EEE MRPC telescopes as traking tools to</u> <u>monitor building stability</u>, Journal of Instrumentation 14 (2019) C05022, doi: 10.1088/17480221/14/06/P06035.
- Abbrescia M. et. al. (EEE Collaboration), <u>Performance of the Multiqap Resistive Plate</u> <u>Chambers of the Extreme Energy Event experiment</u>, Journal of Instrumentation 14 (2019) C05022, doi: 10.1088/1748-0221/14/05/C05022.

2018

- Nania R., Pinazza O. (EEE Collaboration), <u>Measuring cosmic ray showers near the North</u> <u>Pole with the Extreme Energy Events project</u>, Il Nuovo Saggiatore - Bollettino della Società Italiana di Fisica, Nuova Serie Anno 34 • N. 5 Settembre-Ottobre 2018 • N. 6 Novembre-Dicembre 2018.
- EEE Collaboration, <u>Search for long distance correlations between extensive air showers</u> <u>detected by the EEE network</u>, Eur. Phys. J. Plus (2018) 133: 34.

+ several contributions to conference proceedings

backup

Electronics (readout, trigger)

Total power consumption ~ 12,5 W

Detector performances

Channel equalization

Correction for inclination (POLA-01)

 $\mathbf{g} = \mathbf{g}_{z}$

Pressure correction

OULU neutron monitor web site, http://cosmicrays.oulu.fi/ Moscow neutron monitor web site, http://cr0.izmiran.ru/mosc/

PolarquEEEst2018

Scintillators

SAINT GOBAIN BC-400 20 cm x 30 cm x 1 cm

BC-400

DAQ Control

pola-01 DAQ Control

Start DAQ Stop DAQ

Run Configuration

Parameter	Current value	New value
Number of buffers per run	50000	50000
Number of contiguous runs	1000000	1000000
Sensors sampling interval [seconds]	30	30
Maximum run time [seconds]	3600	3600
Trigger mask of the top plane	0	0
Trigger mask of the bottom plane	0	0
Enable the calibration run	0	0
		Apply Parat

ue	New value
0000	50000
0000	1000000
30	30
3600	3600
0	0
0	0
0	0
	Apply Reset

Log

- INFO | 2019-07-07 09:53:39 | Initial MET = 394883619.792
- INFO | 2019-07-07 09:53:39 | Opening sensor run name Data/2019-07-07/POLA-01-2019-07-07-394883619_slo.txt
- INFO | 2019-07-07 09:53:39 | Opening event run name Data/2019-07-07/POLA-01-2019-07-07-394883619.bin
- INFO | 2019-07-07 09:53:39 | Check TRB Status : (0L, 0L, 0L)
- INFO | 2019-07-07 09:53:39 | btrc0: 0
- INFO | 2019-07-07 09:53:39 | btrc1: 0
- INFO | 2019-07-07 09:53:39 | current TRB SD card size = 0
- INFO | 2019-07-07 09:57:02 | Now at event 5000 / 50000 Elapsed time 202.787508
- INFO | 2019-07-07 10:00:28 | Now at event 10000 / 50000 Elapsed time 408.22112

pola-01 Monitor

Previous run plots

Log

INFO | 2019-07-07 09:53:37 | Setting time 20190707 09:53:36 time.struct_time(tm_year=2019, tm_mon=7, tm_mday=7, tm_hour=9, tm_min=53, tm_ INFO | 2019-07-07 09:53:36 | Sun Jul 7 09:53:36 UTC 2019

INFO | 2019-07-07 09:53:39 | 2019-07-07 09:53:39.791994

INFO | 2019-07-07 09:53:39 | Initial MET = 394883619.792

INFO | 2019-07-07 09:53:39 | Opening sensor run name Data/2019-07-07/POLA-01-2019-07-07-394883619_slo.txt

INFO 1 2019-07-07 09:53:39 | Onening event_run name. Data/2019-07-07/POLA-01-2019-07-07-394883619 hin

Neutrons stars fusion on 25th April 2019

Outreach

La Repubblica 06/03/2019

facebook

Video PolarQuEEEst2019 facebook Centro Fermi: https://www.facebook.com/pg/centrofermi.it/videos/

