ICD GUIDE ANALYSIS BASED ON ROOT

ANALYSIS FOR THE ICD

GOAL: MEARSURE THE ANGULAR DISTRIBUTIONS OF MUONS
HOW: ANALYZE THE EEE DATA USING ROOT WHEN: ON NOVEMBER $6^{\text {th }}$

ZENITHAL DISTRIBUTION: Flux of muons as a function of the zenithal angle θ

AZIMUTHAL DISTRIBUTION: Flux of muons as a function of the azimuthal angle ϕ

FIRST ASSUMPTION: ISOTROPIC DISTRIBUTION

Ideally muons arrive from all direction with the same probability (isotropically)

ZENITHAL DISTRIBUTION: uniform (flat) AZIMUTHAL DISTRIBUTION: uniform (flat) is it true?

Extreme
Energy
Events
Science inside Schools

FIRST ASSUMPTION: ISOTROPIC DISTRIBUTION

Due to geometrical reasons the zenithal distribution should be $\propto \sin (\theta)$
$\mathrm{N} 1=1000$ particles on A 1 area (uniform in $\mathrm{d} \theta=20^{\circ}-\mathbf{3 0}{ }^{\circ}$)
$\mathrm{N} 2=1000$ particles on $A 2$ area (uniform in $\mathrm{d} \theta=70^{\circ}-80^{\circ}$)

Rate1 = N1/A1
Rate2 $=$ N2/A2

A2 $>$ A1 $\rightarrow \quad$ Rate $1>$ Rate 2

NOT ISOTROPIC!

FIRST ASSUMPTION: ISOTROPIC DISTRIBUTION

ZENITHAL DISTRIBUTION: $\propto \sin (\theta)$

AZIMUTHAL DISTRIBUTION: uniform (flat)

SIMPLE EXERCISE WITH ROOT

Define and draw a function
TF1 *f = new TF1("funzione costante", " 2 ", 0, 360)

Constant function $\mathrm{f}(\mathrm{x})=2$
in the range $[0,360]$

SIMPLE EXERCISE WITH ROOT

Define and draw a function

TF1 *f = new TF1("funzione costante", "2", 0, 360)
f-> Draw()
root [0] TFA *f = new TFP("funzione costante","2", 0,360)
root [1] f->Draw()
Info in <TCanvas: MakeDefCanvas>: created default TCanvas with name c1
root [2]

Constant function $\mathrm{f}(\mathrm{x})=2$
in the range $[0,360]$

SIMPLE EXERCISE WITH ROOT

Define and draw a function $f(x)=\sin \theta$
TF1 *f = new TF1("funzione seno", "sin(x * pi / 180)", 0, 90)

The sine function needs the argument in radiants ($\mathbf{p i}=\mathbf{3 , 1 4}$)

Play with the graphics
Menu View \rightarrow Editor

NOT SO EASY...

The angular distribution of the muons (ideally isotropic) is affected by 2 other factors:

NOT SO EASY...

The angular distribution of the muons (ideally isotropic) is affected by 2 other factors:

- Detector acceptance

NOT SO EASY...

The angular distribution of the muons (ideally isotropic) is affected by 2 other factors:

- Detector acceptance

NOT SO EASY...

The angular distribution of the muons (ideally isotropic) is affected by 2 other factors:

- Detector acceptance
- Absorption due to the Earth's atmosphere $\rightarrow \propto \cos ^{2} \theta$
(vertical muons are more abundant)

Draw this function using ROOT

IN SUMMARY

AZIMUTHAL DISTRIBUTION

- Detector acceptance

ZENITHAL DISTRIBUTION

- $\propto \sin \theta$
- Detector acceptance

Azimuthal distribution

Zenithal distribution

Extreme Energy Events Science inside Schools

Isotropic distribution

Isotropic distribution
$+$
Detector acceptance

IN SUMMARY

AZIMUTHAL DISTRIBUTION

- Detector acceptance

ZENITHAL DISTRIBUTION

- $\propto \sin \theta$
- Detector acceptance
- $\propto \cos ^{2} \theta$

Azimuthal distribution

Zenithal distribution

350
Phi

Isotropic distribution

Isotropic distribution
$+$
Detector acceptance

Isotropic distribution $+$
Detector acceptance
$+$
$\cos ^{2} \theta$

IN SUMMARY

AZIMUTHAL DISTRIBUTION

- Detector acceptance

ZENITHAL DISTRIBUTION

- $\propto \sin \theta$
- Detector acceptance
- $\propto \cos ^{2} \theta$

Azimuthal distribution

Zenithal distribution

Extreme Energy Events Science inside Schools

DATA analysis

1. Study of the angular distribution in case of isotropic distribution + detector acceptance effects (Monte Carlo simulated data)

Isotropic distribution
$+$
Detector acceptance

DATA analysis

1. Study of the angular distribution in case of isotropic distribution + detector acceptance effects (Monte Carlo simulated data)
2. Study of the experimental angular distribution (isotropic distribution + detector acceptance effects $+\cos ^{2} \theta$ factor)

Isotropic distribution
$+$
Detector acceptance
$+$
$\cos ^{2} \theta$

DATA analysis

1. Study of the angular distribution in case of isotropic distribution + detector acceptance effects (Monte Carlo simulated data)
2. Study of the experimental angular distribution (isotropic distribution + detector acceptance effects $+\cos ^{2} \theta$ factor)
3. Ratio (distribution 2/ distribution 1) to isolate the $\cos ^{2} \theta$ factor

DATA analysis - step 1

1. Study of the angular distribution in case of isotropic distribution + detector acceptance effects (Monte Carlo simulated data)
2. Study of the experimental angular distribution (isotropic distribution + detector acceptance effects $+\cos ^{2} \theta$ factor)
3. Ratio (distribution 2 / distribution 1) to isolate the $\cos ^{2} \theta$ factor

DATA analysis - step 1

Choose a telescope and submit a query to download MC data iatw.cnaf.infn.it/eee/elog/Query (check the data quality on the EEE DQM page)

DATA analysis - step 1

Write your ROOT code in a .txt file (ICD_analysis.txt):

- To open the ROOT file
- To create and draw histograms for MC Phi and Theta distributions

Save your code file (ICD_analysis.txt) in C:\root_v5.34.38\macros Open ROOT (desktop icon)
Execute your code: .x ICD_analysis.txt

DATA analysis - step 1

Your ROOT code for MC data

```
] ICD_analysis.txt - Blocco note
File Modifica Formato Visualizza
{
//OPEN ROOT FILE WITH MC DATA
TFile *fMC = new TFile("D:\\\\EEE\\ICD\\2019\\ROOT\\\ALTA-01from2018-10-02to2018-10-03-MC.root");
TTree *eeeMC = (TTree*)fMC->Get("eee");
//CREATE HISTOS FOR MC THETA AND PHI DISTRIBUTIONS
TH1F *hPhiMC = new TH1F("hPhiMC", "MC Phi Distribution", 72, 0, 360);
TH1F *hThetaMC = new TH1F("hThetaMC", "MC Theta Distribution", 45, 0, 90);
//FILL AND DRAW MC PHI DISTRIBUTION
TCanvas *cPhiMC = new TCanvas();
eeeMC->Draw("(Phi+180) >> hPhiMC");
hPhiMC->Draw();
CPhiMC->SaveAs("D:\\\\EEE\\ICD\\2019\\ROOT\\MCPhi.png");
//FILL AND DRAW MC THETA DISTRIBUTION
TCanvas *cThetaMC = new TCanvas();
eeeMC->Draw("Theta >> hThetaMC");
hThetaMC->Draw();
cThetaMC->SaveAs("D:\\\EEE\\ICD\\2019\\ROOT\\MCTheta.png");
}
```


DATA analysis - step 1

Your ROOT code for MC data

```
] ICD_analysis.txt - Blocco note
File Modifica Formato Visualizza
{
```

```
//OPEN ROOT FILE WITH MC DATA
```

//OPEN ROOT FILE WITH MC DATA
TFile *fMC = new TFile("D:

EEE
ICD
2019
ROOT
ALTA-01from2018-10-02to2018-10-03-MC.root");
TFile *fMC = new TFile("D:

EEE
ICD
2019
ROOT
ALTA-01from2018-10-02to2018-10-03-MC.root");
TTree *eeeMC = (TTree*)fMC->Get("eee");

```
TTree *eeeMC = (TTree*)fMC->Get("eee");
```

//CREATE HISTOS FOR MC THETA AND PHI DISTRIBUTIONS
TH1F *hPhiMC = new TH1F("hPhiMC", "MC Phi Distribution", 72, 0, 360);
TH1F *hThetaMC = new TH1F("hThetaMC", "MC Theta Distribution", 45, 0, 90);
//FILL AND DRAW MC PHI DISTRIBUTION
TCanvas *CPhiMC = new TCanvas();
eeeMC->Draw("(Phi+180) >> hPhiMC");
hPhiMC->Draw();
CPhiMC->SaveAs("D:

EEE
ICD
2019
ROOT
MCPhi.png");
//FILL AND DRAW MC THETA DISTRIBUTION
TCanvas *cThetaMC = new TCanvas();
eeeMC->Draw("Theta >> hThetaMC");
OPEN THE ROOT FILE AND GET THE TREE
hThetaMC->Draw();
cThetaMC->SaveAs("D:
\EEE
ICD
2019
ROOT
MCTheta.png");
\}

DATA analysis - step 1

Your ROOT code for MC data

```
] ICD_analysis.txt - Blocco note
File Modifica Formato Visualizza
{
//OPEN ROOT FILE WITH MC DATA
TFile *fMC = new TFile("D:\\\EEE\\ICD\\2019\\\ROOT\\ALTA-01from2018-10-02to2018-10-03-MC.root");
TTree *eeeMC = (TTree*)fMC->Get("eee");
//CREATE HISTOS FOR MC THETA AND PHI DISTRIBUTIONS
TH1F *hPhiMC = new TH1F("hPhiMC", "MC Phi Distribution", 72, 0, 360);
TH1F *hThetaMC = new TH1F("hThetaMC", "MC Theta Distribution", 45, 0, 90);
```

//FILL AND DRAW MC PHI DISTRIBUTION
TCanvas *cPhiMC $=$ new TCanvas();
eeeMC->Draw("(Phi +180) >> hPhiMC");
hPhiMC->Draw();
cPhiMC->SaveAs ("D:
\EEE
ICD
2019
ROOT
MCPhi.png");
//FILL AND DRAW MC THETA DISTRIBUTION
TCanvas *cThetaMC = new TCanvas();
eeeMC->Draw("Theta >> hThetaMC");
hThetaMC->Draw();
CThetaMC->SaveAs("D:
\EEE
ICD
2019
ROOT
MCTheta.png");
\}

CREATE THE HISTOS (EMPTY)

- Range
- nBins

DATA analysis - step 1

Your ROOT code for MC data

```
] ICD_analysis.txt - Blocco note
File Modifica Formato Visualizza
{
//OPEN ROOT FILE WITH MC DATA
TFile *fMC = new TFile("D:\\\\EEE\\ICD\\2019\\ROOT\\\ALTA-01from2018-10-02to2018-10-03-MC.root");
TTree *eeeMC = (TTree*) fMC->Get("eee");
//CREATE HISTOS FOR MC THETA AND PHI DISTRIBUTIONS
TH1F *hPhiMC = new TH1F("hPhiMC", "MC Phi Distribution", 72, 0, 360);
TH1F *hThetaMC = new TH1F("hThetaMC", "MC Theta Distribution", 45, 0, 90);
```

//FILL AND DRAW MC PHI DISTRIBUTION
TCanvas *cPhimC $=$ new TCanvas();
eeeMC->Draw("(Phi+180) >> hPhiMC");
hPhiMC->Draw();
cPhiMC->SaveAs("D:
\EEE
ICD
2019
ROOT
MCPhi.png");
//FILL AND DRAW MC THETA DISTRIBUTION
TCanvas *cThetaMC = new TCanvas();
eeeMC->Draw("Theta >> hThetaMC");
hThetaMC->Draw();
CThetaMC->SaveAs("D:

EEE
ICD
2019
ROOT
MCTheta.png");
\}

FILL THE HISTO FOR PHI DISTRIBUTION, DRAW AND SAVE IT

DATA analysis - step 1

Your ROOT code for MC data

```
] ICD_analysis.txt - Blocco note
File Modifica Formato Visualizza
{
//OPEN ROOT FILE WITH MC DATA
TFile *fMC = new TFile("D:\\\\EEE\\ICD\\2019\\ROOT\\ALTA-01from2018-10-02to2018-10-03-MC.root");
TTree *eeeMC = (TTree*)fMC->Get("eee");
//CREATE HISTOS FOR MC THETA AND PHI DISTRIBUTIONS
TH1F *hPhiMC = new TH1F("hPhiMC", "MC Phi Distribution", 72, 0, 360);
TH1F *hThetaMC = new TH1F("hThetaMC", "MC Theta Distribution", 45, 0, 90);
//FILL AND DRAW MC PHI DISTRIBUTION
TCanvas *cPhiMC = new TCanvas();
eeeMC->Draw("(Phi+180) >> hPhiMC");
hPhiMC->Draw();
CPhiMC->SaveAs("D:\\\\EEE\\ICD\\2019\\ROOT\\MCPhi.png");
```

FILL THE HISTO FOR
THETA DISTRIBUTION, DRAW AND SAVE IT
//FILL AND DRAW MC THETA DISTRIBUTION
TCanvas *cThetaMC = new TCanvas();
eeeMC->Draw("Theta >> hThetaMC");
hThetaMC->Draw();
CThetaMC->SaveAs("D:
\EEE
ICD
2019
ROOT
MCTheta.png");

DATA analysis - step 1

Your ROOT code for MC data

```
ROOT session
```


ROOT 5.34/36 (u5-34-36Сu5-34-36, Apr 05 2016, 10:25:45 on win32)
CINT/ROOT C/G++ Interpreter version 5.18.00, July 2, 2010
Type ? for help. Commands must be C++ statements. Enclose multiple statements between < \}.
noot [0]
moot [0]
root [0]
noot [0]
root [0] .x ICD_analysis.txt

DATA analysis - step 1

Your ROOT code for MC data

DATA analysis - step 2

1. Study of the angular distribution in case of isotropic distribution + detector acceptance effects (Monte Carlo simulated data)
2. Study of the experimental angular distribution (isotropic distribution + detector acceptance effects $+\cos ^{2} \theta$ factor)
3. Ratio (distribution 2/ distribution 1) to isolate the $\cos ^{2} \theta$ factor

DATA analysis - step 2

Submit a query to download experimental data iatw.cnaf.infn.it/eee/elog/Query (use Duplicate function, without MC flag)

Request a subset of data		Logged in as "CATA-01"	ELロE
Submit Preview	Back		
Entry time:	Wed Oct 2 09:48:57 2019		
Author:	CAM- 01		
MC:	\square		
Output format:	0		
Telescope ID:	ALTA-01 v		
Start time:	October v 2 v Year: 2018	可	
Stop time:	October v 3 v Year: 2018	-	
RunNumber:	\checkmark		
Seconds:	\checkmark		
Nanoseconds:	\checkmark		
Theta:	\checkmark		
Phi:	\checkmark		
Chisquare:	\checkmark		
Timeofflight:	\checkmark		
TrackLength:	\checkmark		
DeltaTime:	\checkmark		
Pressure:	\checkmark		
Cut:	ChiSquare < 10		
\qquad			

DATA analysis - step 2

Write and append your ROOT code in the .txt file (ICD_analysis.txt):

- To open the ROOT file
- To create and draw histograms for experimental Phi and Theta distributions

Open ROOT (desktop icon)
Execute your code: .x ICD_analysis.txt

DATA analysis - step 2

Your ROOT code for experimental data

- ICD_analysis.txt - Blocco note

File Modifica Formato Visualizza
//OPEN ROOT FILE WITH EXPERIMENTAL DATA
TFile *fDATA = new TFile("D:
\EEE
ICD
2019
ROOT
ALTA-01from2018-10-02to2018-10-03.root"); TTree *eeeDATA = (TTree*) fDATA->Get ("eee");
//CREATE HISTOS FOR EXPERIMENTAL THETA AND PHI DISTRIBUTIONS
TH1F *hPhiDATA = new TH1F "hPhiDATA", "Experimental Phi Distribution", 72, 0, 360); TH1F *hThetaDATA = new TH1F("hThetaDATA", "Experimental Theta Distribution", 45, 0, 90);
//FILL AND DRAW EXPERIMENTAL PHI DISTRIBUTION
TCanvas *cPhidATA $=$ new TCanvas()
eeeDATA->Draw("(Phi+180) >> hPhiDATA");
hPhiDATA->Draw();
CPhiDATA->SaveAs("D:
\EEE
ICD
2019
ROOT
DDATAPhi.png");
//FILL AND DRAW EXPERIMENTAL THETA DISTRIBUTION
TCanvas *cThetaDATA $=$ new TCanvas();
eeeDATA->Draw("Theta >> hThetaDATA");
hThetaDATA->Draw();
cThetaDATA->SaveAs("D:

EEE
ICD
2019
ROOT
\DATATheta.png");

DATA analysis - step 2

Your ROOT code for experimental data

ROOT session

ROOT 5.34/36 (u5-34-36Cu5-34-36, Apr 05 2016, 10:25:45 on win32)
CINT/ROOT C/G++ Interpreter version 5.18.00, July 2, 2010
Type ? for help. Commands must be C++ statements. Enclose multiple statements between < \}.
root [0]
root [0]
root [0]
noot [0]
root [0] .x ICD_analysis.txt

DATA analysis - step 2

Your ROOT code for experimental data

Experimental Phi Distribution

Experimental Theta Distribution

DATA analysis - step 3

1. Study of the angular distribution in case of isotropic distribution + detector acceptance effects (Monte Carlo simulated data)
2. Study of the experimental angular distribution (isotropic distribution + detector acceptance effects $+\cos ^{2} \theta$ factor)
3. Ratio (distribution 2/ distribution 1) to isolate the $\cos ^{2} \theta$ factor

DATA analysis - step 3

Write and append your ROOT code in the .txt file (ICD_analysis.txt):

- To create, fill and draw histos (for the ratio)

Open ROOT (desktop icon)
Execute your code: .x ICD_analysis.txt

DATA analysis - step 3

Your ROOT code to calculate the ratio
// CREATE HISTOS FOR THE RATIOS
TH1F *hPhiRATIO = new TH1F("hPhiRATIO", "Ratio between exp and MC Phi Distribution", 72, 0, 360);
TH1F *hThetaRATIO = new TH1F ("hThetaRATIO", "Ratio between exp and MC Theta Distribution", 45, 0, 90);
hPhiRATIO->Divide (hPhidATA,hPhiMC) ;
TCanvas *cPhiRATIO = new TCanvas();
hPhiRATIO->Draw();
CPhiRATIO->SaveAs("D:
\EEE
ICD
2019
ROOT
RATIOPhi.png");
hThetaRATIO->Divide (hThetaDATA, hThetaMC) ;
TCanvas *cThetaRATIO $=$ new TCanvas();
hThetaRATIO->Draw();
cThetaRATIO->SaveAs("D:

EEE
ICD
2019
ROOT
RATIOTheta.png");
\}

DATA analysis - step 3

Your ROOT code to calculate the ratio

Compare the Theta Distribution with a $\cos ^{2} \theta$ function

$$
[0] * \cos \left(x^{*} p i / 180\right) * \cos \left(x^{*} p i / 180\right)
$$

Compare the Phi Distribution with a constant function $f(x)=$ pol0

DATA analysis - step 3

Compare data with expected trend (phi distribution)

DATA analysis - step 3

Compare data with expected trend (phi distribution)

DATA analysis - step 3

Compare data with expected trend (phi distribution)

DATA analysis - step 3

Compare data with expected trend (theta distribution)

DATA analysis - step 3

Compare data with expected trend (theta distribution)

DATA analysis - step 3

Compare data with expected trend (theta distribution)

Possible improvements

- Study the zenithal distribution in ranges of Phi
- Study the azimuthal distribution in ranges of Theta
- Apply cuts on ChiSquare, TOF, Tracklength...
- Improve the graphycs
- And use your imagination and creativity

For any question please contact your EEE referent

