ICD GUIDE ANALYSIS BASED ON ROOT

Extreme Energy Events Science inside Schools

ANALYSIS FOR THE ICD

GOAL: MEARSURE THE ANGULAR DISTRIBUTIONS OF MUONS HOW: ANALYZE THE EEE DATA USING ROOT WHEN: ON NOVEMBER 6th

ZENITHAL DISTRIBUTION: Flux of muons as a function of the zenithal angle θ

AZIMUTHAL DISTRIBUTION: Flux of muons as a function of the azimuthal angle ϕ

FIRST ASSUMPTION: ISOTROPIC DISTRIBUTION Ideally muons arrive from all direction with the same probability (isotropically)

ZENITHAL DISTRIBUTION : uniform (flat) AZIMUTHAL DISTRIBUTION: uniform (flat) is it true?

FIRST ASSUMPTION: ISOTROPIC DISTRIBUTION Due to geometrical reasons the zenithal distribution should be $\propto sin(\theta)$

N1 = 1000 particles on A1 area (uniform in d θ = 20°-30°) N2 = 1000 particles on A2 area (uniform in d θ = 70°-80°)

Rate1 = N1/A1 Rate2 = N2/A2

 $A2 > A1 \rightarrow Rate1 > Rate2$

NOT ISOTROPIC!

K

FIRST ASSUMPTION: ISOTROPIC DISTRIBUTION

ZENITHAL DISTRIBUTION : $\infty \sin(\theta)$ **AZIMUTHAL DISTRIBUTION:** uniform (flat)

Extreme Energy Events Science inside Schools

SIMPLE EXERCISE WITH ROOT

Define and draw a function

TF1 *f = new TF1("funzione costante", "2", 0, 360)

SIMPLE EXERCISE WITH ROOT

Define and draw a function TF1 *f = new TF1("funzione costante", "2", 0, 360) f-> Draw()

2

150

200

250

300

350

- • ×

Help

SIMPLE EXERCISE WITH ROOT

Define and draw a function f(x) = sinθ TF1 *f = new TF1("funzione seno", "sin(x * pi / 180)", 0, 90)

The angular distribution of the muons (ideally isotropic) is affected by 2 other factors:

Extreme Enerav

The angular distribution of the muons (ideally isotropic) is affected by 2 other factors:

Detector acceptance

The angular distribution of the muons (ideally isotropic) is affected by 2 other factors:

- Detector acceptance
- Absorption due to the Earth's atmosphere $\rightarrow \propto \cos^2\theta$ (vertical muons are more abundant)

Draw this function using ROOT

AZIMUTHAL DISTRIBUTION

ZENITHAL DISTRIBUTION

• $\propto \sin\theta$

Azimuthal

AZIMUTHAL DISTRIBUTION

Detector acceptance

ZENITHAL DISTRIBUTION

- $\propto \sin\theta$
- Detector acceptance

AZIMUTHAL DISTRIBUTION

Detector acceptance

ZENITHAL DISTRIBUTION

- $\propto \sin\theta$
- Detector acceptance
- $\propto \cos^2\theta$

AZIMUTHAL DISTRIBUTION

Detector acceptance

ZENITHAL DISTRIBUTION

- $\infty \sin \theta$
- Detector acceptance
- $\propto \cos^2\theta$

DATA analysis

1. Study of the angular distribution in case of isotropic distribution + detector acceptance effects (Monte Carlo simulated data)

DATA analysis

- 1. Study of the angular distribution in case of isotropic distribution + detector acceptance effects (Monte Carlo simulated data)
- 2. Study of the experimental angular distribution (isotropic distribution + detector acceptance effects + $\cos^2\theta$ factor)

DATA analysis

- 1. Study of the angular distribution in case of isotropic distribution + detector acceptance effects (Monte Carlo simulated data)
- 2. Study of the experimental angular distribution (isotropic distribution + detector acceptance effects + cos²θ factor)
- **3.** Ratio (distribution 2/ distribution 1) to isolate the $\cos^2\theta$ factor

- 1. Study of the angular distribution in case of isotropic distribution + detector acceptance effects (Monte Carlo simulated data)
- 2. Study of the experimental angular distribution (isotropic distribution + detector acceptance effects + cos²θ factor)
- 3. Ratio (distribution 2/ distribution 1) to isolate the $\cos^2\theta$ factor

Choose a telescope and submit a query to download MC data iatw.cnaf.infn.it/eee/elog/Query

(check the data quality on the EEE DQM page)

	÷	\rightarrow	С	$\hat{\Omega}$	iatw.cnaf.infn.it/eee/elog/Query/	*	Р	:	
l					Please login				ł
					Username: CATA-01				
					Password:				l
					Keep me logged in on this computer				l
					for the next 31 days or until I log out				l
					Submit				
					ELOG V2.0.2-2485				I
									l
									l
									I
I									
I									
I									

< → C ☆ ()	← → C △ (a latw.cnaf.infn.it/eee/elog/Query/?cmd=New ☆ Ø i							
Request a subset of	data Logged in as "CATA-01" FLOG							
Submit Preview Back								
Entry time:	Wed Oct 2 09:48:57 2019							
Author:	Art 01							
MC:	8							
Output format:								
Telescope ID:	ALTA-01 •							
Start time:	October • 2 • Year: 2018							
Stop time:	October • 3 • Year: 2018							
RunNumber:	8							
Seconds:	8							
Nanoseconds:	×							
Theta:	2							
Phi:	*							
ChiSquare:	2							
TimeOfFlight:	8							
TrackLength:	8							
DeltaTime:	8							
Pressure:	2							
Cut:	ChiSquare < 10							
	メ物 物物物のジ シショ 共 結開の■エリポトス目目生化							
	8. \$ 1 🖬 🗖 🖶 🥹 🕹 🕤							
Style •	Format Font Size I Taj · Og · (?)							

Write your ROOT code in a .txt file (ICD_analysis.txt):

- To open the ROOT file
- To create and draw histograms for MC Phi and Theta distributions

Save your code file (ICD_analysis.txt) in C:\root_v5.34.38\macros Open ROOT (desktop icon) Execute your code: .x ICD_analysis.txt

ICD_analysis.txt - Blocco note File Modifica Formato Visualizza ? //OPEN ROOT FILE WITH MC DATA TFile *fMC = new TFile("D:\\\EEE\\ICD\\2019\\ROOT\\ALTA-01from2018-10-02to2018-10-03-MC.root"); TTree *eeeMC = (TTree*)fMC->Get("eee"); //CREATE HISTOS FOR MC THETA AND PHI DISTRIBUTIONS TH1F *hPhiMC = new TH1F("hPhiMC", "MC Phi Distribution", 72, 0, 360); TH1F *hThetaMC = new TH1F("hThetaMC", "MC Theta Distribution", 45, 0, 90); //FILL AND DRAW MC PHI DISTRIBUTION TCanvas *cPhiMC = new TCanvas(); eeeMC->Draw("(Phi+180) >> hPhiMC"); hPhiMC->Draw(); cPhiMC->SaveAs("D:\\\EEE\\ICD\\2019\\ROOT\\MCPhi.png"); //FILL AND DRAW MC THETA DISTRIBUTION TCanvas *cThetaMC = new TCanvas(); eeeMC->Draw("Theta >> hThetaMC"); hThetaMC->Draw(); cThetaMC->SaveAs("D:\\\EEE\\ICD\\2019\\ROOT\\MCTheta.png");

Extreme Energy Events Science inside Schools

DATA analysis – step 1

Your ROOT code for MC data

ICD_analysis.txt - Blocco note						
File Modifica Formato Visualizza ?						
//OPEN ROOT FILE WITH MC DATA TFile *fMC = new TFile("D:\\\EEE\\ICD\\2019\\ROOT\\ALTA-01from2 TTree *eeeMC = (TTree*)fMC->Get("eee");	018-10-02to2018-10-03-MC.root");					
//CREATE HISTOS FOR MC THETA AND PHI DISTRIBUTIONS TH1F *hPhiMC = new TH1F("hPhiMC", "MC Phi Distribution", 72, 0, 360); TH1F *hThetaMC = new TH1F("hThetaMC", "MC Theta Distribution", 45, 0, 90);						
//FILL AND DRAW MC PHI DISTRIBUTION TCanvas *cPhiMC = new TCanvas(); eeeMC->Draw("(Phi+180) >> hPhiMC"); hPhiMC->Draw();						
<pre>CPhiMC->SaveAs("D:\\\EEE\\ICD\\2019\\ROOT\\MCPhi.png"); //FILL AND DRAW MC THETA DISTRIBUTION TCanvas *cThetaMC = new TCanvas(); eeeMC->Draw("Theta >> hThetaMC"); hThetaMC->Draw(); cThetaMC->SaveAs("D:\\\EEE\\ICD\\2019\\ROOT\\MCTheta.png"); }</pre>	CREATE THE HISTOS (EMPTY) • Range • nBins					

Your ROOT code for MC data

ICD_analysis.txt - Blocco note						
File Modifica Formato Visualizza ?						
//OPEN ROOT FILE WITH MC DATA TFile *fMC = new TFile("D:\\\EEE\\ICD\\2019\\ROOT\\ALTA-01from2018-10-02to2018-10-03-MC.root"); TTree *eeeMC = (TTree*)fMC->Get("eee");						
//CREATE HISTOS FOR MC THETA AND PHI DISTRIBUTIONS TH1F *hPhiMC = new TH1F("hPhiMC", "MC Phi Distribution", 72, 0, 360); TH1F *hThetaMC = new TH1F("hThetaMC", "MC Theta Distribution", 45, 0, 90);						
<pre>//FILL AND DRAW MC PHI DISTRIBUTION TCanvas *cPhiMC = new TCanvas(); eeeMC->Draw("(Phi+180) >> hPhiMC"); hPhiMC->Draw(); cPhiMC->SaveAs("D:\\\EEE\\ICD\\2019\\ROOT\\MCPhi.png");</pre>						
<pre>//FILL AND DRAW MC THETA DISTRIBUTION TCanvas *cThetaMC = new TCanvas(); eeeMC->Draw("Theta >> hThetaMC"); hThetaMC->Draw(); cThetaMC->SaveAs("D:\\\EEE\\ICD\\2019\\ROOT\\MCTheta.png"); }</pre>	FILL THE HISTO FOR PHI DISTRIBUTION, DRAW AND SAVE IT					

- O X ICD_analysis.txt - Blocco note File Modifica Formato Visualizza ? //OPEN ROOT FILE WITH MC DATA TFile *fMC = new TFile("D:\\\EEE\\ICD\\2019\\ROOT\\ALTA-01from2018-10-02to2018-10-03-MC.root"); TTree *eeeMC = (TTree*)fMC->Get("eee"); //CREATE HISTOS FOR MC THETA AND PHI DISTRIBUTIONS TH1F *hPhiMC = new TH1F("hPhiMC", "MC Phi Distribution", 72, 0, 360); TH1F *hThetaMC = new TH1F("hThetaMC", "MC Theta Distribution", 45, 0, 90); FILL THE HISTO FOR //FILL AND DRAW MC PHI DISTRIBUTION TCanvas *cPhiMC = new TCanvas(); THETA DISTRIBUTION, eeeMC->Draw("(Phi+180) >> hPhiMC"); hPhiMC->Draw(); **DRAW AND SAVE IT** cPhiMC->SaveAs("D:\\\EEE\\ICD\\2019\\ROOT\\MCPhi.png"); //FILL AND DRAW MC THETA DISTRIBUTION TCanvas *cThetaMC = new TCanvas(); eeeMC->Draw("Theta >> hThetaMC"); hThetaMC->Draw(); cThetaMC->SaveAs("D:\\\EEE\\ICD\\2019\\ROOT\\MCTheta.png");

😤 ROOT session							
**************************************	*** * * * *						
<pre>* Fou are welcome to visit our web site * http://root.cern.ch * **********************************</pre>	* * *** 6, 10:25:45 on win32>						
CINT/ROOT C/C++ Interpreter version 5.18.00, July 2, 2010 Type ? for help. Commands must be C++ statements. Enclose multiple statements between { }. root [0] root [0] root [0] root [0]							
root [0] .x ICD_analysis.txt							

- 1. Study of the angular distribution in case of isotropic distribution + detector acceptance effects (Monte Carlo simulated data)
- 2. Study of the experimental angular distribution (isotropic distribution + detector acceptance effects + $\cos^2\theta$ factor)
- 3. Ratio (distribution 2/ distribution 1) to isolate the $\cos^2\theta$ factor

Submit a query to download experimental data iatw.cnaf.infn.it/eee/elog/Query (use Duplicate function, without MC flag)

	←	\rightarrow	С	仚		iatw.cnaf.infn.it/ee	ee/elog/Query/			*	Р	:
							Please login					
						Username:	CATA-01					
						Password:						
						🗹 Kee	p me logged in on this c	omputer				
						for the	Submit	log out				
							ELOG V2.9.2-2455					
5												
5												
		-			_				_			_

← → C ☆ (atw.cnaf.infn.it/eee/elog/Query/?cmd=New					
Request a subset of	data Logged in as "CATA-01"					
Submit Preview Ba	ck					
Entry time:	Wed Oct 2 09:48:57 2019					
Author:	ATT-01					
MC:						
Output format:						
Telescope ID:	ALTA-01 V					
Start time:	October • 2 • Year: 2018					
Stop time:	October • 3 • Year: 2018					
RunNumber:						
Seconds:						
Nanoseconds:						
Theta:						
Phi:						
ChiSquare:						
TimeOfFlight:						
TrackLength:						
DeltaTime:						
Pressure:	✓					
Cut:	ChiSquare < 10					
I I I I I I I I I I I I I I I I I I I						

Write and append your ROOT code in the .txt file (ICD_analysis.txt):

- To open the ROOT file
- To create and draw histograms for experimental Phi and Theta distributions

Open ROOT (desktop icon) Execute your code: .x ICD_analysis.txt

Your ROOT code for experimental data

```
ICD analysis.txt - Blocco note
File Modifica Formato Visualizza ?
//OPEN ROOT FILE WITH EXPERIMENTAL DATA
TFile *fDATA = new TFile("D:\\\EEE\\ICD\\2019\\ROOT\\ALTA-01from2018-10-02to2018-10-03.root");
TTree *eeeDATA = (TTree*)fDATA->Get("eee");
//CREATE HISTOS FOR EXPERIMENTAL THETA AND PHI DISTRIBUTIONS
TH1F *hPhiDATA = new TH1F("hPhiDATA", "Experimental Phi Distribution", 72, 0, 360);
TH1F *hThetaDATA = new TH1F("hThetaDATA", "Experimental Theta Distribution", 45, 0, 90);
//FILL AND DRAW EXPERIMENTAL PHI DISTRIBUTION
TCanvas *cPhiDATA = new TCanvas();
eeeDATA->Draw("(Phi+180) >> hPhiDATA");
hPhiDATA->Draw();
cPhiDATA->SaveAs("D:\\\EEE\\ICD\\2019\\ROOT\\DATAPhi.png");
//FILL AND DRAW EXPERIMENTAL THETA DISTRIBUTION
TCanvas *cThetaDATA = new TCanvas();
eeeDATA->Draw("Theta >> hThetaDATA");
hThetaDATA->Draw();
cThetaDATA->SaveAs("D:\\\EEE\\ICD\\2019\\ROOT\\DATATheta.png");
```


DATA analysis – step 2 Your ROOT code for experimental data

PROOT session							
<pre>************************************</pre>	*** * * * * * * *						
ROOT 5.34/36 <v5-34-360v5-34-36, 05="" 20<br="" apr="">CINT/ROOT C/C++ Interpreter version 5.18.0 Type ? for help. Commands must be C++ stat Enclose multiple statements between { }. root [0] root [0] root [0] root [0] root [0] root [0] .x ICD_analysis.txt</v5-34-360v5-34-36,>	16, 10:25:45 on win32) 0, July 2, 2010 ements.						

Your ROOT code for experimental data

DATA analysis – step 2

- 1. Study of the angular distribution in case of isotropic distribution + detector acceptance effects (Monte Carlo simulated data)
- 2. Study of the experimental angular distribution (isotropic distribution + detector acceptance effects + cos²θ factor)
- **3.** Ratio (distribution 2/ distribution 1) to isolate the $\cos^2\theta$ factor

Write and append your ROOT code in the .txt file (ICD_analysis.txt):

• To create, fill and draw histos (for the ratio)

Open ROOT (desktop icon) Execute your code: .x ICD_analysis.txt

DATA analysis – step 3 Your ROOT code to calculate the ratio

Í	ICD_analysis.txt - Blocco note	3 X
	<u>File M</u> odifica F <u>o</u> rmato <u>V</u> isualizza <u>?</u>	
		^
	// CREATE HISTOS FOR THE RATIOS TH1F *hPhiRATIO = new TH1F("hPhiRATIO", "Ratio between exp and MC Phi Distribution", 72, 0, 360); TH1F *hThetaRATIO = new TH1F("hThetaRATIO", "Ratio between exp and MC Theta Distribution", 45, 0, 90);
	hPhiRATIO->Divide(hPhiDATA,hPhiMC); TCanvas *cPhiRATIO = new TCanvas(); hPhiRATIO->Draw(); cPhiRATIO->SaveAs("D:\\\EEE\\ICD\\2019\\ROOT\\RATIOPhi.png");	
	hThetaRATIO->Divide(hThetaDATA,hThetaMC); TCanvas *cThetaRATIO = new TCanvas(); hThetaRATIO->Draw(); cThetaRATIO->SaveAs("D:\\\EEE\\ICD\\2019\\ROOT\\RATIOTheta.png");	Ξ
	}	-

DATA analysis – step 3 Your ROOT code to calculate the ratio

Compare the Theta Distribution with a cos²θ function [0]*cos(x*pi/180) * cos(x*pi/180)

Compare the Phi Distribution with a constant function f(x) = pol0

Compare data with expected trend (phi distribution)

Compare data with expected trend (phi distribution)

Output of the fit procedure

🌳 Fit Panel	
Data Set: TH1F::hPhiRATIO	•
Fit Function	
Type: Prodof 1D pol0	•
Operation	
💿 Nop 🔿 Add 🕥 Conv	
pol0	
Selected:	
pol0	Set Parameters
General Minimization	
Fit Settings	
Method	
Chi-square 🔻	User-Defined
✓ Linear fit	🗖 Robust: 0.95 🛬
Fit Options	
🗖 Integral	Use range
Best errors	Improve fit results
All weights = 1	Add to list
Empty bins, weights=1	Use Gradient
Draw Options	
No drawing	
Do not store/draw	<u>A</u> dvanced
x 0.00	×360.00 🚖
	Dent Otre
Update <u>Fit</u>	Keset Close
TH1F::hPhiR/ LIB Minuit MIGRAD	Itr: 0 Prn: DEF

Compare data with expected trend (phi distribution)

Compare data with expected trend (theta distribution)

Compare data with expected trend (theta distribution)

_ 🗆 X

Compare data with expected trend (theta distribution)

Possible improvements

Extreme Energy Events Science inside Schools

- Study the zenithal distribution in ranges of Phi
- Study the azimuthal distribution in ranges of Theta
- Apply cuts on ChiSquare, TOF, Tracklength...
- Improve the graphycs

...

And use your imagination and creativity

For any question please contact your EEE referent

