

MUSEO STORICO DELLA FISICA E CENTRO STUDI E RICERCHE ENRICO FERMI A CONTRO EXTREME ENERGY EVENTS (EEE) La Scienza nelle Scuole

On the use of GNSS

for atomic clocks comparison

dSA

Satellite S

Giancarlo Cerretto

(g.cerretto@inrim.it - +39 011 3919 239)

Decima Conferenza dei Progetti del Centro Fermi | 6-8 Marzo 2019 - Torino

Table of contents

- Timing in GNSS
- GPS Observables and Code (pseudorange) measurement

Basics and measurement model

- How to get GPS Time?
 - Pseudorange measurement correction
 - Satellite clocks and orbits
 - Ionosphere and troposphere delays
 - Receiver hardware delays (calibration)
 - From GPS Time to UTC
- GNSS for timing applications
- Timing in the neutrinos speed measurement

Timing in GNSS

GNSS: Global Navigation Satellite System

On the use of GNSS for atomic clocks comparison 3 of 30

Main leadings

- GPS satellite veichle (SV) and its on-board clock
 - Atomic frequency standards (Rb, Cs)
 - ✤ Availability of GPS Time!
- Signals-in-space (SIS) transmitted by the GPS SV
 - L1/L2 Carriers, CA/P code modulations, Navigation data
- Satellite-to-Earth propagation medium
 - Ionosphere
 - Troposphere
- GPS receiver and its antenna
 - ✤ Fixed (and known) location
 - Timing or geodetic receiver
- Internal/External frequency reference for receiver
 - Atomic clocks (H-maser, Cesium...)
 - UTC(k) time scale

On the use of GNSS for atomic clocks comparison 4 of 30

GPS observables

- Code (pseudorange) measurement
 - Apparent transition time of the GPS modulated signal (code) from a satellite to the receiver
 - Only C/A-code on L1 (Standard Positioning Service, SPS)
 P(Y)-code on both L1 and L2 (Precise Positioning Service, PPS)
 - Biased and noisy estimate of istantaneous actual range (distance) between receiver and satellite
- Carrier phase measurement
 - Difference between the phases of the receiver-generated carrier signal and the carrier received from a satellite at the measurement epoch
 - Both L1 and L2 frequencies (available to all users)
 - Precise measurement of change in the satellite-receiver pseudorange over a time interval and estimates of its istantaneous rate (Doppler frequency)
 - Precise but ambiguous estimate of istantaneous actual range between receiver and satellite (modulo-2π measurement only)

Pseudorange (code) measurement

Basics

Based on the measurement of the apparent transition time of the GPS modulated signal (e.g. C/A code) from a satellite to the receiver

- Each GPS satellite generates the signal in accordance with its on-board atomic clock
- The receiver generates the replica of each received signal in accordance with its clock
- The receiver aligns the C/A-code replica generated at the receiver with the signal received from the satellite
- Satellite clock and receiver clock are not synchronized (dt_R^(S) ≠ 0)

Pseudorange (code) measurement (cont'd)

Basics (cont'd)

On the use of GNSS for atomic clocks comparison 7 of 30

Pseudorange (code) measurement (cont'd)

Measurement model

Pseudorange measurement performed at epoch t (GPS Time) by the receiver using the incoming SIS transmitted at epoch ($t - \tau$) from a single GPS satellite:

$$\rho_{\mathsf{R}}^{(\mathsf{S})}(t) = \mathsf{R}_{\mathsf{R}}^{(\mathsf{S})}(t, t-\tau) + \mathsf{C} \cdot \left[\delta \mathsf{t}_{\mathsf{R}}(t) - \delta \mathsf{t}^{(\mathsf{S})}(t-\tau)\right] + \mathsf{I}_{\mathsf{R}}^{(\mathsf{S})}(t) + \mathsf{T}_{\mathsf{R}}^{(\mathsf{S})}(t) + \varepsilon_{\mathsf{R}}^{(\mathsf{S})}(t)$$

(expressed in distance units, i.e. meters)

- $R_{R}^{(S)}$ actual geometric range between satellite and receiver (in meters)
- δt_R receiver clock offset wrt GPS Time: $\delta t_R = t_R t_{GPS}$ (in seconds)
- $\delta t^{(S)}$ satellite clock offset wrt GPS Time: $\delta t^{(S)} = t^{(S)} t_{GPS}$ (in seconds)
- I_R^(S) ionosphere propagation delay (in meters)
- T_R^(S) troposphere propagation delay (in meters)
- $\epsilon_{R}^{(S)}$ both modelling errors and unmodelled errors (e.g., multipath) (in meters)
 - vacuum speed of light (299 792 458 m/s)

С

How to get GPS Time?

satellite orbits

$\rho_{\mathsf{R}}^{(\mathsf{S})}(t) = \mathsf{R}_{\mathsf{R}}^{(\mathsf{S})}(t, t-\tau) + \mathbf{c} \cdot \left[\delta t_{\mathsf{R}}(t) - \delta t^{(\mathsf{S})}(t-\tau)\right] + \mathbf{I}_{\mathsf{R}}^{(\mathsf{S})}(t) + \mathbf{T}_{\mathsf{R}}^{(\mathsf{S})}(t) + \varepsilon_{\mathsf{R}}^{(\mathsf{S})}(t)$

- The fixed position of the receiver at the signal reception time *t* is known (from a previous survey)
 - Phase center of the receiver's antenna
 - Coordinates in ECEF (Earth-Centered Earth-Fixed) system
- The position of the GPS satellite at the signal transmission time (t-τ) can be computed by the receiver using the broadcast ephemeris (Subframes 2 and 3 of the navigation message)
 - Predicted by GPS CS for each satellite
 - Keplerian orbital parameters
 - Phase center of the SV's antenna
 - ECEF coordinates

satellite clock

$\rho_{\mathsf{R}}^{(S)}(t) = \mathsf{R}_{\mathsf{R}}^{(S)}(t, t-\tau) + c \cdot \left[\delta t_{\mathsf{R}}(t) - \delta t^{(S)}(t-\tau)\right] + I_{\mathsf{R}}^{(S)}(t) + T_{\mathsf{R}}^{(S)}(t) + \varepsilon_{\mathsf{R}}^{(S)}(t)$

- Predicted by the GPS Control Segment for each satellite
- Modeled as a quadratic function over a time interval

$$\delta t^{(S)} = a_{f0} + a_{f1} \cdot (t - t_{oc}) + a_{f2} \cdot (t - t_{oc})^{2} + \Delta t_{r}$$

- Φ $t_{\rm oc}$ reference time for the clock model (seconds)
- Φ t satellite clock time (seconds, from beginning of GPS week)
- $\Phi \Delta t_r$ relativistic correction term (to be computed by the receiver!)
- The parameters of the model $\{a_{f0}, a_{f1}, a_{f2}, t_{oc}\}$ are uploaded to the satellite which broadcasts them in the Subframe 1 of the navigation message
- RMS error estimation of $\delta t^{(S)} \approx 5 \text{ ns}$

satellite clock (cont'd)

On the use of GNSS for atomic clocks comparison 11 of 30

satellite clock (cont'd)

On the use of GNSS for atomic clocks comparison 12 of 30

ionosphere

$\rho_{\mathsf{R}}^{(S)}(t) = \mathsf{R}_{\mathsf{R}}^{(S)}(t, t-\tau) + c \cdot \left[\delta t_{\mathsf{R}}(t) - \delta t^{(S)}(t-\tau)\right] + \mathsf{I}_{\mathsf{R}}^{(S)}(t) + \mathsf{T}_{\mathsf{R}}^{(S)}(t) + \varepsilon_{\mathsf{R}}^{(S)}(t)$

- lonosphere major facts:
 - 50 km to 1000 km above the Earth
 - Dispersive medium (refraction index is dependent on the frequency)
 - Group velocity (v_g) differs from phase velocity (v_p)
 - Codes (i.e., C/A, P) experiences a group delay
 - Carrier (L1, L2) experience a phase advance
 - Ionosphere delay is dependent on the Total Electron Content (TEC)

$$I_R^{(S)} \approx [40.3/(c \cdot f^2)] \cdot TEC$$

 Delays in pseudorange measurement (code) and carrier phase measurement are equal in magnitude but opposite in sign ⇒ "code-to-carrier divergence"

ionosphere (cont'd)

- Single-frequency receivers (L1 only or L2 only) are allowed to compute the ionospheric delay I_R^(S)
 - by using the Klobuchar model
 - empirical model representing the zenith delay as a constant value at nighttime and a half-cosine function in daytime
 - parameters are estimated by GPS CS and broadcast by each satellite in the page 18 of Subframe 4 of the navigation message
 - by combining the model with an obliquity factor (to be computed by the receiver!)
 - accounts for longer signal path length through the ionosphere wrt zenith path
 - depends on the satellite elevation angle

On the use of GNSS for atomic clocks comparison 14 of 30

Comparison between the Klobuchar predicted TEC and the measured TEC at Brussels on an hourly basis.

ionosphere (cont'd)

Source: http://gpsatm.oma.be

On the use of GNSS for atomic clocks comparison 15 of 30

ionosphere (cont'd)

- **Dual-frequency receivers** (L1 and L2) can compute the group delay and the phase advance directly from measurements on both frequencies
 - by building the ionosphere-free pseudorange measurement, which is actually a linear combination of dual-frequency measurements:

$$\rho_{R}^{(S)}_{free} = 2.546 \cdot \rho_{R}^{(S)}_{L1} - 1.546 \cdot \rho_{R}^{(S)}_{L2}$$

- The ionosphere-free pseudorange measurement is ideally not affected by ionospheric effect, nevertheless:
 - both modelling errors and unmodelled errors affecting dual-frequency pseudorange measurement fully result in $\rho_R^{(S)}_{free}$
 - $\rho_R^{(S)}_{free}$ is significantly noisier than each single-frequency measurement

 $(2.546^2 + 1.546^2)^{\frac{1}{2}} \approx 3$

assuming that both dual-frequency measurements, $\rho_R^{(S)}{}_{L1}$ and $\rho_R^{(S)}{}_{L2}$, have the same noise

troposphere

$\rho_{\mathsf{R}}^{(S)}(t) = \mathsf{R}_{\mathsf{R}}^{(S)}(t, t-\tau) + c \cdot \left[\delta t_{\mathsf{R}}(t) - \delta t^{(S)}(t-\tau)\right] + I_{\mathsf{R}}^{(S)}(t) + T_{\mathsf{R}}^{(S)}(t) + \varepsilon_{\mathsf{R}}^{(S)}(t)$

- Troposphere major facts:
 - 0 km to 50 km above the Earth
 - Refraction index is not dependent on the frequency (within L band)
 - Not a dispersive medium ($n \approx 1.0003$ at sea level, approaching unity at upper end)
 - Both codes (i.e., C/A, P) and carrier (L1, L2) experience a delay
 - The tropospheric delay cannot be estimated from GPS measurements!
 - no parameters are provided by GPS CS in navigation message
 - resort to models to compensate for it
 - ► Saastamonien model
 - Hopfield model
 - implemented by the receiver firmware

QUESTION

How can we compare versus GPS Time the reference clock of a stand-alone GPS (timing) receiver using the signals broadcasted by a single GPS satellite?

ANSWER

- Three steps procedure:
 - Perform pseudorange measurement
 - Correct (invert) pseudorange measurement
 - Calibrate Time measurement

On the use of GNSS for atomic clocks comparison 18 of 30

- From each "corrected" pseudorange $\rho_{corr, R}^{(S)}$, a <u>noisy</u> and <u>biased</u> estimate of the receiver clock offset versus GPS Time, δt_R , can be then achieved:
 - <u>Noisy (precision)</u> = noise on the pseudorange, "quality" of the correction, residuals, number of satellites (more pseudoranges);
 - <u>Biased (accuracy)</u> = Hardware Delays (calibration).

On the use of GNSS for atomic clocks comparison 20 of 30

• In order to get the actual receiver clock offset wrt GPS Time $\delta t_{R,bias}$ in a "one-way" measurement, the hardware delay $\delta t_{R,hw}$ (due to the antenna and its preamplifier, the antenna cable and the receiver hardware) has to be estimated and then removed

 \Rightarrow Calibration

 $\delta t_{R} = \delta t_{R,hw} + \delta t_{R,bias}$

- Two classes of calibration methods
 - Absolute calibration (U=1 ns)
 - End-to-end biases estimation (preferred, but complex)
 - Differential calibration (U=2-3 ns)
 - Side-by-side comparison with an absolutely calibrated device (easier than absolute)

On the use of GNSS for atomic clocks comparison 22 of 30

From GPS Time to UTC (cont'd)

 δt_{UTC} offset between UTC(USNO) and GPS Time: $\delta t_{UTC} = t_{GPS} - t_{UTC(USNO)}$ (in seconds)

- **Predicted** by the GPS Control Segment (thanks to data from USNO)
- Modeled as a linear function over a time interval

$$\delta t_{\text{UTC}} = A_0 + A_1 \cdot (t_{\text{GPS}} - t_{\text{ot}}) + \Delta t_{\text{LS}}$$

 t_{ot} reference time for UTC data (seconds, from beginning of GPS week WN_t)

- Φ t_{GPS} GPS Time as estimated by the user (seconds, from beginning of GPS week)
- $\Phi \Delta t_{LS}$ delta time due to leap seconds (added to UTC since 1980; now Δt_{LS} = 18 seconds)
- The parameters of the model {A₀, A₁, t_{ot}, Δt_{LS}, WN_t} are uploaded to the satellite which broadcasts them in the page 18 of Subframe 4 of the navigation message
- RMS error estimation of $\delta t_{UTC} \approx 5 \div 10 \text{ ns}$

GNSS for timing applications (1/2)

INRIM ISTITUTO NAZIONALE DI RICERCA METROLOGICA

On the use of GNSS for atomic clocks comparison 24 of 30

GNSS for timing applications (2/2)

ISTITUTO NAZIONALE DI RICERCA METROLOGICA

On the use of GNSS for atomic clocks comparison 25 of 30

Timing in the neutrinos speed measurement (1/5)

- LST@CERN and LST@LNGS not synchronized (link not calibrated)
- Timing systems at CERN and at LNGS to be <u>calibrated</u>

On the use of GNSS for atomic clocks comparison 26 of 30

Timing in the neutrinos speed measurement (2/5)

V. Pettiti, G. Cerretto, «Taratura e controllo di apparecchiature per la datazione di eventi», Relazione INRIM (Certificato di Taratura) N. 12-0391-01 emessa il 15/06/2012, Committente INFN-LNGS (Laboratori Nazionali del Gran Sasso)

On the use of GNSS for atomic clocks comparison 27 of 30

Timing in the neutrinos speed measurement (3/5)

V. Pettiti, G. Cerretto, «Taratura e controllo di apparecchiature per la datazione di eventi», Relazione INRIM (Certificato di Taratura) N. 12-0391-01 emessa il 15/06/2012, Committente INFN-LNGS (Laboratori Nazionali del Gran Sasso)

On the use of GNSS for atomic clocks comparison 28 of 30

Timing in the neutrinos speed measurement (4/5)

V. Pettiti, G. Cerretto, «Taratura e controllo di apparecchiature per la datazione di eventi», Relazione INRIM (Certificato di Taratura) N. 12-0391-01 emessa il 15/06/2012, Committente INFN-LNGS (Laboratori Nazionali del Gran Sasso)

On the use of GNSS for atomic clocks comparison 29 of 30

Timing in the neutrinos speed measurement (5/5)

B. Caccianiga et al, «GPS-based CERN-LNGS time link for Borexino», Journal of Instrumentation, Volume 7, August 2012

On the use of GNSS for atomic clocks comparison 30 of 30