Why precision timing for Extreme Energy Events

Giornate di Studio di Extreme Energy Events

6-7-8 marzo 2019 Aula Magna della Cavallerizza Reale

Torino

The first extensive shower event candidate at the EEE observatory

The time displacement among the 3 telescopes was

~ 1 microsecond

Cuts on the relative angles among tracks were applied

EEE has both

timing + tracking

capabilities!

An extensive air shower candidate: how to detect it? Time plays a fundamental role

To "detect" a candidate EEE has to define a **coincidence time window** among telescopes.

The window has to be as large as to include all possible shower direction

Thus, in principle the minimum coincidence window is

L/v

and if

- L~1 km and v~c
- $\Delta T \sim 3$ microseconds!

Can we correct some of the **sistematic** uncertainties?

using a "guess" on the shower direction we can try to

correct the time difference between detectors

by subctracting to the Telescope 2 particle time the additional "light path"

ΔL cos(Θ) / v

Physics is always more complex than what one would think....

There are other uncertainties sources.

They are **not** just **sistematic uncertainties**

- disc thickness
 - disc shape

due to the complex particle cascade process particles are not travelling in time

Disc thickness depends on energy of the primary particle

Disc shape is not linear (parabolic)

Examples of what we get after corrections

LAQU (204 m)

CERN (15 m)

correction assuming $\Delta \phi = -2.35$, $\Delta L = 15.0$ m

Examples of what we get after corrections

SAVO (1182 m)

CAGL (520 m)

correction assuming $\Delta \phi = -0.33$, $\Delta L = 1182.0$ m

correction assuming $\Delta \phi = 1.26$, $\Delta L = 520.0$ m

How much the time measurement uncertainty matters

How much the time measurement uncertainty matters

Spurious coincidences (blue area) = 2 f1 f2 ΔT

 $N1 = f1 \Delta T$

number of events within a time window ΔT for a given telescope with a typical event frequency f1

Number of possible pairs of
coincidence within the same time window
N1 N2 = f1 Δ T f2 Δ T
Therefore the frequency of spurious pairs is
N1 N2 / ΔT = f1 f2 ΔT

 $N2 = f2 \Delta T$ number of events within a time window ΔT for a given telescope with a typical event frequency f1

How much the time measurement uncertainty matters

Spurious coincidences (blue area) = 2 f1 f2 ΔT

25 ns fis + 50 ns err

A very rare event search... where time really matters!

A very rare event search... where time really matters!

- Physics is not known
 - a wide time displacement between events could be driven by physics
- Very low statistics
 - Signal/Noise not possible

In case of clock misalignement

NO EVENTS!!!

thus let's try to deepen our knowledge about Time....