Why precision timing for
 Extreme Energy Events

Giornate di Studio di Extreme Energy Events

6-7-8 marzo 2019
Aula Magna della Cavallerizza Reale
Torino

The first extensive shower event candidate at the EEE observatory

The time displacement among the 3 telescopes was
~ 1 microsecond
Cuts on the relative angles among tracks were applied

EEE has both
timing + tracking
capabilities!

An extensive air shower candidate: how to detect it? Time plays a fundamental role

To "detect" a candidate EEE has to define a coincidence time window among telescopes.

The window has to be as large as to include all possible shower direction

Thus, in principle the minimum coincidence window is

L/v
and if
$\mathbf{L \sim 1} \mathbf{~ k m}$ and $\mathbf{v \sim c}$

$\Delta T \sim 3$ microseconds!

Can we correct some of the sistematic uncertainties?

using a "guess" on the shower direction we can try to
correct the time difference between detectors
by subctracting to the Telescope 2 particle time the additional "light path"
$\Delta L \cos (0) / v$

Physics is always more complex than what one would think....

There are other uncertainties sources.
They are not just sistematic uncertainties

- disc thickness
- disc shape
due to the complex particle cascade process particles are not travelling in time

Disc thickness depends on energy of the primary particle

Disc shape is not linear (parabolic)

Examples of what we get after corrections

CERN (15 m)
correction assuming $\Delta \phi=-2.35, \Delta \mathrm{~L}=15.0 \mathrm{~m}$

LAQU (204 m)

correction assuming $\Delta \phi=-2.86, \Delta \mathrm{~L}=204.0 \mathrm{~m}$

Examples of what we get after corrections

CAGL (520 m)

correction assuming $\Delta \phi=1.26, \Delta \mathrm{~L}=520.0 \mathrm{~m}$

SAVO (1182 m)
correction assuming $\Delta \phi=-0.33, \Delta \mathrm{~L}=1182.0 \mathrm{~m}$

How much the time measurement uncertainty matters

25 ns fis +3 ns err

25 ns fis +10 ns err

25 ns fis +50 ns err

How much the
 time measurement uncertainty matters

Spurious coincidences (blue area) $=2$ f1 f2 ΔT
$\mathrm{N} 1=\mathrm{f} 1 \Delta \mathrm{~T}$
number of events within a time window ΔT for a given telescope with a typical event frequency f1

$N 2=f 2 \Delta T$
number of events within a time window ΔT for a given telescope with a typical event frequency f1

How much the
 time measurement uncertainty matters

Spurious coincidences (blue area) $=2 \mathrm{f} 1 \mathrm{f} 2 \Delta \mathrm{~T}$

A very rare event search... where time really matters!

$\mathbf{L \sim 1 0 0 0} \mathbf{~ k m}$ and $\mathbf{v ~ c}$
ΔT ~ 3 milliseconds

A very rare event search... where time really matters!

- Physics is not known
- a wide time
displacement between events could be driven by physics
- Very Iow statistics
- Signal/Noise not possible

In case of clock misalignement
NO EVENTS!!!

thus
 let's try to deepen our knowledge about Time....

