January 14 2019 EEE Meeting Centro Fermi - Rome

Detector Simulation Working Group (DeSi-WG) EEE telescope simulation Model validation

<u>M.Battaglieri</u>, <u>S.Grazzi</u> <u>G.Mandaglio</u>, C.Pellegrino, S.Pisano F.Coccetti, F.Noferini, M.Ungaro

DEtector**SI**mulation-**WG**

Goal: generate pseudo data using GEANT4 to track CORSIKA generated particle

EEE-Telescope simulation: response

Work plan

- ✓ Define critical parameters in MRPC response: timing, efficiency, strip multiplicity, ...
- ✓ Define a measurement procedure to asses parameters (eg. scintillator hodo for efficiency, top/bottom chambers for precise track determination, ...)
- \checkmark Test the characterization procedure on a telescope (as a template)
- ✓ Implement the response in GEMC
- Check results sensitivity to details of the new response
- ✓ Define a subset of few (important) parameters
- ✓ Define a simplified characterization procedure that could be extended to the other telescopes
- Identify tasks for schools (Alternaza Scuola Lavoro) and tasks requiring EEE-experts
- Document the procedure writing a note
- Distribute to other schools

EEE-Telescope simulation: response to cosmic validation

Work plan

- ✓ Single hit: GEMC produces already reasonable distributions and absolute rates
- \checkmark For detailed comparison we need to implement the same analysis chain used to process data
- ✓ Implement in GEMC output necessary information to feed to the RecSW
- \checkmark Establish at which level of details pseudo-data have to be similar to data
- ✓ Identify variables (multeplicity, angular distribution, timing, ...) to be used to validate simulations
- ✓ Validate simulations comparing variables and rates
- \checkmark No interaction with school for this task (Too difficult!)
- Write a note for internal use

✓ Already done
 ✓ Done from last update

• To be done

EEE-Telescope simulation: location

✓ Already done
✓ Done from last update
• To be done

Work plan

✓ GEMC infrastructure is ready for precise surrounding geometry/material description

- ✓ Use SV-Chiabrera as a template (simple geometry, single layer roof + walls and windows)
- ✓ Coordinate with teacher how to obtain construction details (drawings, wall/roof size, composition,...)
- Implement information in GSIM
- Test results looking at absolute rate variation
- Teach/show students the effect of surrounding materials running GEMC with different parameters
- Define the full characterisation procedure and write a note
- Distribute to other schools

EEE-Telescope simulation: CORSIKA

Work plan

 \checkmark Feed CORSIKA output to GEMC replacing the internal muon generator

 \checkmark Generate a shower form a high energy primary with CORSIKA and sample the particle flux at sea level

- ✓ Convert info (4-momentum, particleId, vertex, time,...) from CORSIKA to LUND
- \checkmark Feed LUND to GEMC to replace the internal cosmic generator
- Repeat validation comparing sim to data
- Start physics analysis: multiple coincidence, long-range coincidence, ...
- No interaction with school for this task (Too difficult!)
- Write a note for internal use

What has been done so far

<u>ab12</u>

5

M.Battaglieri - INFN GE G.Mandaglio - UniME/INFN

DEtectorSImulation-WG

Goal: generate pseudo data using GEANT4 to track CORSIKA generated particle

DESI-WG: Activity report update

GEant4 Monte Carlo: GEMC

Detector

0

Trigger

7

GEMC

A GEANT4 libraries based simulation tools

- components description
- components interaction
- user-defined geometry and hit
- internal generator (included cosmic rays)
- multiple input/output format
- CAD geometry accepted
- interactive/batch mode
- source on GitHub

GEMC graphic interface

Installed (and now working!) in EEE cluster at CNAF!

M.Ungaro

EEE-MRPC response to cosmic rays in **GEANT4**

- MRPC geometry: material, size, ...
- MRPC response (parametrized)
- Telescope response: geometry, trigger, ...
- Telescope location: effect of roof, walls, surrounding materials, ...
- Telescope: muon rates for different multiplicities

*** EEE MRPC response**

- * No avalanche simulated in details
- * Effective hit process:
 - Sample XY (and Z) muon hit on on bottom strip plane
 - Assume both strips and gaps are active
 - Apply a spread to account for multiple hits and spread position resolution X and Ynand T

*MRPC parameters

- 90x160 active area
- Active: 2.5cm x 24 strips + 0.7cm x (24-1) gaps
- Time spread: $\sigma = 238$ ps
- Cluster size: $\sigma_X = 9.2 \text{ mm}$
- Cluster size: $\sigma_{Y} = 15 \text{ mm}$
- Light speed: 15.8 ns/cm
- HIT_{XY} is gaussian-spread and projected on the sensitive area to derive strip multiplicity
- *Telescope parameters

8

• 3 chambers

<u>ab12</u>

- -50/0/+50 cm apart
- placed in a concrete box wall on all sides (140cm concrete)

- Multi-telescopes: coincidence rates
- Single/multiple telescope(s) studies: bottom-up muons, ...

Ref: GENO-01

M.Battaglieri - INFN GE

Ref: JINST13(2018)P08026

EEE-Sim reconstruction

gemc_to_eee()

the routine reads the gemc root-file output and convert it in a root-file readable by EEE-reconstruction code (F. Noferini)

How to use EEE reconstriction for simulated data

Reconstruction @cnaf (instruction and macros by F. Noferini) you must use the following machine eee-analisi-user: 182 run the following commands:

- 1) scl enable devtoolset-6 python27 bash
- 2) source /home/eeesoft/geant4_vmc/env.sh

Yuo have to copy g4Config.C, telescopes e provasim.C from: /home/eeesoft/geant4_vmc/EEE_Analyzer/eeeroot

To run the reconstruction: eeeroot.exe -b -q -l provasim.C Interesting output: BOLO-02-2017-01-01-00001_digit.root BOLO-02-2017-01-01-00001_dst.root

digit is the input file dst is the output file, exactly formally equal to experimental data

..._digit.root

TTree name -> EventsDigits

- **seconds/I** -> trigger time in seconds
- **nanoseconds/l** -> trigger time in nanoseconds
- **type/I** -> Event Type: 0=gps, I=trigger
- **nhit** --> Numer of hit (At least 6)
- chamb[nhit]/I --> chamber number
- strip[nhit]/I --> strip number (0-23 left, 24-47 right)
- timeHit[nhit]/F --> hit time inside the trigger window (-10 ns +10 ns)
- totHit[nhit]/F --> time over threshold in ns (coud be equal to 0)

G.Mandaglio

0

Muon generation

* Single-muon generation

* Semi-sphere generation such as to obtain a flat distribution on a plane surface $\frac{1}{2}$

* Improved Gaisser parametrization for $Flux(E_{\mu,\Theta})$ to include Earth curvature (all latitudes) and low energy muons (<100GeV)

<u>e () lab12</u>

EEE-Telescope simulation: geometry

*Telescope Parameters

- 3 chambers
- -50/0/+50 cm apart
- placed in a concrete box wall on all sides (140cm concrete)

*Individual response to cosmic muons (2-10 GeV) of the three chambers

M.Battaglieri - INFN GE

П

EEE-Sim validation

* Sanity checks (REC vs. GEN):

- Energy spectrum
- Theta
- Phi
- Phi asymmetry
- $\Delta Z_{chambers}$ changes (45cm, 50cm and 55cm)

Dependence on $\Delta Z_{chambers}$

* Tool to check the dependence of observables on telescope parameters

Comparison with GENO-01

* Comparison to GENO-01 telescope

- built in March 2017 at CERN and delivered in Oct 2017
- installed at the 4th floor (4 floors above) of Dpt.Physics/INFN-GE •
- Commissioned in Aug '18, data taking since Sept '18
- full control of geometry and environmental parameters
- The location and surrounding materials can be an issue

Рьот	Alarm	STATUS	Оυтрит
RateHitEvents	y_values	Clean	30.54 +- 0.71
DeltaTime	exp_fit_lambda	Clean	31.81 +- 0.22
HitMultTop	x_average	Clean	1.2898 +- 0.0044
HitMultMid	x_average	Clean	1.2569 +- 0.0044
HitMultBot	x_average	Clean	1.1956 +- 0.0039
HitMultTotal	x_average	Clean	3.7390 +- 0.0093
ClusterMultTop	x_average	Clean	1.0627 +- 0.0025
ClusterMultMid	x_average	Clean	1.0925 +- 0.0029
ClusterMultBot	x_average	Clean	1.0751 +- 0.0026
ClusterMultTotal	x_average	Clean	3.2303 +- 0.0065
ChiSquare	x_average	Clean	2.188 +- 0.029
RateTrackEvents	y_values	Clean	27.62 +- 0.67
FractionTrackEvents	y_values	Clean	0.9188 +- 0.0062

<u>ab12</u>

GENO-0 llocation

M.Battaglieri - INFN GE

e.

Simulating the environment

* the 'mountain' on one side is simulated as a block of iron/concrete with clearance and $\Delta\Theta\pm15$

- The phi asymmetry shows, as expected positive values (as in the data set)
- Muon tomography is an efficient way to check for anisotropy related to the surrounding materials

M.Battaglieri - INFN GE

Confirming absolute rates using a cosmic box (ASTRO)

18

Liceo Casiraghi

- 8 scintillators bars (60x8x2 + 18x8x2)cm3
- Plastic wrapped in 200um-Gd-linen mylar
- Extruded plastic + WLS coupled to SiPMs (single side)
- FPGO readout, 3 sets of thresholds
- P,T,H + GPS signal
- All possible pairs of counters to select cosmic muons and cosmic neutrons
- Transportable
- Battery for stand-alone operations up to ~20h
- Planned test with EEE-CB ion Sardinia
- Excellent stability in time (~1%)
- Absolute rate compared to simulations shows a good matching (10%) for outside measurement
- Measure and correct for the attenuation factor (A) due to the material sourrounding EEE telescope

Pair	Data (Hz)	Sim (Hz)
LongLong	1.99 ± 0.01 Hz	2.1 ± 0.1
ShortShort	0.42 ± 0.01 Hz	0.46 ± 0.05
ShortLong	1.01 ± 0.01	0.93 ± 0.05

EEE detector simulation

EEE-Sim absolute rates

 $R_{Data} = (30.5 \pm 0.1) Hz$

 $R_{Sim} = (35 \pm 4) Hz$

Concrete thknss = 140cm
Gen Sphere R=250cm
Gen Sphere ΔZ=0cm

 $A_{ASTRO} = R_{dentro}/R_{fuori} = (0.77 \pm 0.05)$

$R_{Corr} = (40.7 \pm 0.1) Hz$

- Iunga-lunga: A = 0.739 +- 0.005
- corta-corta: A = 0.800 +- 0.010

Per ottenere il rate che il telescopio EEE misurerebbe se fosse all'esterno moltiplichiamo il rate misurato dal telescopio per 1/A.

Il fattore di attenuazione A

Rate EEE misurato: (30.5+-0.01)Hz Rate EEI

Rate EEE corretto (aperto): RateMisurato/A = (40,67 +-0.015)Hz

Liceo Casiraghi (S.Bertolini, M.Pirovano, R.Vadala')

Systematic checks

R _{Sim} =	(42	± 4) Hz

- Gen Spher
- R_{Sim} = (35 ± 4) Hz
- R_{Sim} = (35 ± 4) Hz

- Gen Sphere R=150cm
 Gen Sphere ΔZ=-50cm
 - Concrete vault thknss = 140cm

Concrete vault thknss = 20cm

- Gen Sphere R=150cm
- Gen Sphere ΔZ =-50cm
- Concrete vault thknss = 140cm
- Gen Sphere R=250cm
- Gen Sphere ΔZ =-50cm

Energy	fraction of the spectrum (%)	
0.2 - 2 GeV	44.5	
2- 10 GeV	41	
10- 100 GeV	14.2	
100 - 500 GeV	0.3	
Tot	100	

GENO-01 angular efficiency

* As a check: GEN = REC/ ϵ (where $\epsilon \neq 0$)

*Sim angular distribution represents a projection of world data on EEE GENO-01 telescope

<u>e () lab12</u>

GENO-01/SIM comparison

*Sim 10% higher than data rate (absolute)
* Sim theta distribution shifted down by ~1-2°
*Good consistency with high energy muons

21

EEE detector simulation

GENO-01 angular distribution

* GENO-01 angular distribution underestimate $\theta < 20^{\circ}$

* Is it related to GENO-01 environment parametrisation?

Comparison with other telescopes

≝ 900 F

800

* It seems that DATA distribution is peaked at larger angles (wrt SIM)

EEE detector simulation

Theta

70 θ[°]

Entries

Std Dev

Mean

CATA-02

19526 22.38

10.97

e<u>@lab12</u>

Comparison with other telescopes

Comparison to BOLO-01 (no shielding)

Significant effect of *environment simulation on angular distribution

Data/sim comparison

BOLO-01

<u>e () lab12</u>

- all angles show a similar (10%) asymmetry
- It can be explained by a reduced acceptance at large angles with a significant L/R asymmetry

GENO-01

small angles show no asymmetry
A ~10% asymmetry rises for θ>20°
Consistent with the GENO-01 location (mountain on one side)

Systematics checks

- * Effect of changing data selection: fiducial volume excluding side hits
- * Effect of changing parameters in the microscopic parametrisation of the MRPC response
- * Effect of changing the generation procedure
- * Effect of changing concrete vault
- * Effect of changing generation parameters

No significant effect found

Strategy

*Changing roof size checking absolute rates and asymmetry for a detailed and realistic description of the environment for GENO-01

- * Implement a realistic environment description for BOLO-01
- * Search for a reference telescope (last generation, stable in time, well controlled) with a simplified location
- * Use ASTRO for out-door/in-door comparisons

Summary and future plans

- ***EEE MRPC** response implemented in GEANT4
- *EEE data reconstruction program modified to process pseudo-data
- *Simulations matches (@10%) data angular and time distribution
- *Absolute rates of single muon hits on the telescope (3 chambers) are comparable to measured rates
- * Simulation can be used to understand variation of telescope parameters
 * Disagreement for theta could be due to materials around the telescope
 * Next steps:
 - investigation of the theta discrepancy
 - high statistic GEANT4 simulation at CNAF
 - use of CORSIKA to generate and propagate multi-muon hits (primary hadron in high atmosphere + shower propagation to the sea-level)
 - Sim/data for multi-telescopes correlation comparison

Back up

EEE-Sim results Systematic checks for data/sim agreement

*Effect of changing data selection

• Fiducial cuts to the data: 80x150 (over 90x160)

• Hit selection: only | hit

No significant effect found

*Theta angular distribution compared to other telescopes (CERN) with similar results

EEE-Sim results

Systematic checks for data/sim agreement

*Effect of changing parameters in the microscopic parametrisation of the MRPC response

- Time spread: σ = 94ps [NIM A539 (2008) 263] 238ps [JINST13(2018)P08026]
- Cluster size: $\sigma_X = 8.4$ mm [NIM A539 (2008) 263] 9.2mm [JINST13(2018)P08026]
- Cluster size: $\sigma_{Y} = 8.4$ mm [NIM A539 (2008) 263] 15.mm [JINST13(2018)P08026]
- Light speed: 11.24ns/cm [NIM A539 (2008) 263] 15.8ns/cm [ReconstructionCode]

No significant effect found since the SIM algorithm uses only the first hit as the REC does for data

*Effect of changing the generation procedure

• Generation semi-sphere: R = [150cm-250cm]; position in Z = [centered, offset to -50cm]

No significant effect found since the SIM algorithm uses only the first hit as the REC does for data

* Surrounding material have a significant impact on absolute rate. What about the angular distribution?

***Effect of changing concrete vault**

- * Concrete vault [0cm 140cm]
- * Expected to be ~140cm
- * Best rate matching obtained for 140cm

34

*Better agreement if we only consider high energy muons

Systematic checks for data/sim agreement

*Effect of changing generation parameters

- Semi sphere size: R = [150cm-250cm]
- Semi sphere position: Z = [centered, offset to -50cm]

No significant effect found since the SIM algorithm uses only the first hit as the REC does for data