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1- Neutral cosmic rays (light rays and neutrinos):
Light rays have been measured (e.g., Hubble) for over 50 years. 
Fundamental discoveries have been made.

Fundamental Science on the International Space Station (ISS)
There are two kinds of cosmic rays traveling through space

2- Charged cosmic rays: A new region in science.  Using a magnetic spectrometer (AMS) on 
ISS is the only way to provide precision long term (20 years) measurements of high 
energy charged cosmic rays.
AMS is often referred to as the “Hubble telescope for charged particles”.

AMS

AMS
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“One of the very first discussions on AMS was  at the Erice School of 
Subnuclear Physics in 1994-1995.   AMS results have been presented on 

many occasions at the School.

We thank Professor Zichichi for his continuing interest and support.”
Samuel Ting



First flight AMS-01
Approval: April 1995, Assembly: December 1997, Flight: 10 days in June 1998
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The existence of two Spectra in proton flux

Phys. Lett. B472 (26 Jan 2000) 215-226

Phys. Lett. B494 (2000) 193-202

He4 and He3 isotopes are 
completely separated in space
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Alpha Magnetic Spectrometer (AMS-02)

In 7 years, over 128 billion charged particles 
have been measured by AMS 6
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5m x 4m x 3m
7.5 tons

300,000 electronics channels
650 processors 8
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TRD
Identify e+, e-

Silicon Tracker
Z, P

ECAL
E of e+, e-, γ

RICH
Z, E

TOF
Z, E

Particles and nuclei are defined by their 
charge (Z) and energy (E ~ P)

Z, P or R (=P/Z) are measured independently 
by the  Tracker, RICH, TOF  and ECAL

AMS: A TeV precision, multipurpose spectrometer

Magnet
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Magnet System: 10 Magnets were made
Seven magnets to understand 

the field calculation, leakage and dipole moment 
Three full-size magnets for 

1) space qualification, 2) destructive testing and 3) flight

Magnet vibration qualification
1010
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Measurement of Nuclear Charge and its Velocity to 1/1000

Particle

Ring Imaging CHerenkov (RICH)

Θ

Intensity ⇒ Z2 Q⇒ V

10,880 
photosensors

Aerogel
NaF

Z = 13 (Al)
P = 9.148 TeV/c 

ISS
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Electromagnetic Calorimeter

50 000 fibers, f = 1 mm

distributed uniformly 

inside 600 Kg of lead

e±

Lead foil

Fibers

provides a precision, 17 X0, TeV, 

3-dimensional measurement of 

1. the directions to � 1 degree

2. the energy resolution of 2%

3. Distinguishes electrons and positrons 

from protons, helium, …by a factor of 

10,000
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Time of Flight

ISS Data on Velocity and Charge
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Principles
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LowerTOF
(layers 3 
and 4)

UpperTOF
(layers 1 
and 2)

Purpose
•To start the data acquisition to the experiment.
•To distinguish at the trigger level protons from higher charge nuclei.
•To measure the time of flight of the particles traversing the detector 

with a resolution sufficient to distinguish upward from downward 
going particles at a level of at least 10-9.

•To measure the absolute charge of the particle.



PMTs have been tested in the thermal vacuum
chamber in Bologna

Trigger efficiency may vary with 
temperature.
Operations at high temperatures may 
damage the photocathode 
(evaporation).
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UTOF

LTOF+RICH+ECAL

LTOF

Detector integration in May 2010
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After careful calibration with space data using the 

redundancy of the AMS-02 apparatus

overall resolution: 2%�Z 

Charge measurement
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cuts to 
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measured by one paddle 
in the TOF system and 
the longitudinal 
coordinate of the hit point 
of the reconstructed track

x = vlight

✓
t1 � t2

2

◆

particleparticle

apparent x

side 1 side 2

Background rejection
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Apparent charge of electrons selected by TRD and ECAL

The number of particles hitting the 
TOF counters increases as the 
electron penetrates deeper in the 
detector producing more particles 
through brehmstrallung.

These events may suffer of a bad 
rigidity measurement due to wrong 
association of tracker hits to the 
reconstructed track. 

The TOF information can be used 
in the computation of a likelihood 
function, which contribute in 
identifying charge-confusion 
events.

Event tagging

25



The AMS-02 TOF system
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Technicians: C. Guandalini, M. Lolli, R. Pilastrini, G. Molinari, F. Massera, , M. Tesi, 
F. Gabbanini, L. Degli Esposti, S. Finelli, G. Pancaldi, S. Zagato, A. Zucchini

Engineers: G. Laurenti, I. D’Antone

Students: E. Prati, D. Minelli , L. Brocco, L. Baldini, S. Recupero, E. Lanciotti, K. Molino, V. Vitale, 
L. Patuelli, A. Montanari, R. Martelli, M. Salvadore, N. Carota, L. Amati, A. Oliva, L. Villa, D. Baldassari

Research Physicists: V. Bindi, D. Casadei, G. Castellini, F. Cindolo, A. Contin, F. Giovacchini, 
G. Levi, N. Masi, F. Palmonari, L. Quadrani, C. Sbarra, A. Zichichi

TOF system – Bologna team



AMS in the ESA Electromagnetic Interference (EMI) Chamber,

March 2010, ESTEC, Noordwijk, the Netherlands
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AMS in the ESA TVT Chamber,  April 2010, ESTEC
Duration 14 Days
P < 10-9 bar

Ambient temperature
from -90oC to +40oC
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Calibration of the AMS Detector

2000 positions

Test beam at CERN SPS: 
p, e�, π�,    10−400 GeV

Computer simulation:
Interactions,   Materials,   Electronics

10,000 CPU cores provided by CERN

AMS
27 km

7 km
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Total weight:    2008 t
AMS weight:        7.5 t

May 16, 2011, 08:56 AM



May 19: AMS installation completed at 5:15 AM.
Data taking started at 9:35 AM 32



Communications for AMS on ISS
To prevent damage to AMS, we need to know the conditions within 4 hours  

Starlight

WSGT

CERN GRID
Internet

NASA Internet

MSFC
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AMS POCC at CERN
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The AMS Flight Control Team in the POCC is in constant communication with 
the ISS Flight Control Team at the JSC. 
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IN2P3 – LYON (400 cores)

FZJ – Juelich (2300 cores)

CNAF – INFN BOLOGNA (1300 cores)

CIEMAT – MADRID (200 cores)
AMS@CERN – GENEVA (10,000 cores)

NLAA – BEIJING (1024 cores)
SEU – NANJING (2016 cores)

ACAD. SINICA – TAIPEI (3000 cores)

Analysis is conducted at the AMS Science Operations Center (SOC) 
at CERN and in the regional centers around the world.

Each physics topic is analysed by at least two independent groups
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AMS

Dark Matter 

c
cccc
cc

cc

p, He
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M. Turner and F. Wilczek, Phys. Rev. D42 (1990) 1001; J. Ellis 26th ICRC (1999)

ISM

Collision of Cosmic Rays with Interstellar Matter (ISM) produces e+

Dark Matter annihilation also produces light antimatter: e+

The excess of e+, from Dark Matter annihilations can be measured by AMS

e+



Electron and Positron spectra before AMS 
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1. These were the best data.
2. Nonetheless, the data have large errors and are inconsistent.
3. The data has created many theoretical speculations.
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Distinct features of the positron flux and of the electron flux

1.9 million 
positrons

28.1 million 
electrons
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Diffuse term Source term

(c) In the entire energy range the positron flux is well described by the sum of a diffuse 
term associated with positrons produced in the collision of cosmic rays, which 
dominates at low energies  and a new source term of positrons, which dominates at 
high energies

Diffuse term Source term

, 68% CL
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Origins of Cosmic Positrons 

1.At low energies positrons originate from the collisions 
of cosmic rays.

2.At high energies positrons predominately originate 
either from dark matter collisions or from new 
astrophysical sources, not from the collisions of 
cosmic rays.
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AMS

Traditionally, there are two prominent classes 
of cosmic rays:

Primary Cosmic Rays (p, He, C, O, …)
are produced at their source and travel through space

and are directly detected by AMS. They carry information on 
their sources and the history of travel.
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Cosmic Protons
1. Protons are the most abundant cosmic rays.
2. Before AMS there have been many measurements of the proton 

spectrum.
3. In cosmic rays models, the proton spectral function was assumed to 

be a single power law Φ = CEg with g = -2.7 
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AMS Measurement of the proton spectrum
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⦁ AMS
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AMS Result: Surprisingly, above 60 GV,
these fluxes have identical rigidity dependence. 

He 90 million events

O 7.0 million events
C  8.4 million events

49



AMS

Traditionally, there are two prominent classes 
of cosmic rays:

Primary Cosmic Rays (p, He, C, O, …)

Secondary Cosmic Rays (Li, Be, B, …)
are produced in the collisions of primary cosmic rays. They 

carry information on the history of the travel and on the 
properties of the interstellar matter.
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AMS Result:
Secondary cosmic rays Li, Be, and B also

have identical rigidity dependence
but they are different from primaries
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Time structures in the p and He fluxes 
in Solar System
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Experimental work on Antimatter in the Universe
Search for Baryogenesis Direct search

LHC-b, ATLAS,CMS
AMS

Increase in sensitivity: x 103 – 106

Increase in energy to ~TeVNo explanation found for the absence of antimatter 
(no reason why antimatter should not exist)

LHC CERN

FranceSwitzerland

Italy

the Alps

Proton has finite 
lifetime 

New symmetry 
breaking

τp > 6.6 * 1033 years  
Super Kamiokande
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Momentum = 40.3 �2.9 GeV/c
Charge =  - 2
Mass =  2.96�0.33 GeV/c2

Mass (3He)   =   2.83 GeV/c 2
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An anti-Helium candidate: 
Presented to DOE, September 2016



To date, we have observed eight events in the mass 
region from 0 to 10 GeV with Z = –2.

All eight events are in the helium mass region.

All eight events are clean single-track events without 
additional hits. 

All eight events are in the momentum range < 100 
GeV/c (where the momentum resolution is better 

than 10%).
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A. Oliva et al.,
Proc. Sci. 35th ICRC 2017

~2 orders of 
magnitude

3He/He data and models of cosmic ray collisions
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International Recognition of AMS Results
AMS Publications (>2600 inSPIRE citations)

1) M. Aguilar et. al., Phys. Rev. Lett. 110 (2013) 141102. Editor’s Suggestion, 
Viewpoint in Physics, Highlight of the Year 2013.

2) L. Accardo et al., Phys. Rev. Lett. 113 (2014) 121101. Editor’s Suggestion
3) M. Aguilar et. al., Phys. Rev. Lett. 113 (2014) 121102. Editor’s Suggestion
4) M. Aguilar et. al., Phys. Rev. Lett. 113 (2014) 221102.
5) M. Aguilar et. al., Phys. Rev. Lett. 114 (2015) 171103. Editor’s Suggestion 
6) M. Aguilar et. al., Phys. Rev. Lett. 115 (2015) 211101. Editor’s Suggestion
7) M. Aguilar et. al., Phys. Rev. Lett. 117 (2016) 091103. 
8) M. Aguilar et. al., Phys. Rev. Lett. 117 (2016) 231102. Editor’s Suggestion
9) M. Aguilar et. al., Phys. Rev. Lett. 119 (2017) 251101.
10) M. Aguilar et. al., Phys. Rev. Lett. 120 (2018) 021101. Editor’s Suggestion
11) M. Aguilar et. al., Phys. Rev. Lett. 121 (2018) 051101. 
12) M. Aguilar et. al., Phys. Rev. Lett. 121 (2018) 051102. Editor’s Suggestion
13) M. Aguilar et. al., Phys. Rev. Lett. 121 (2018) 051103. 
From: "garisto@aps.org" <garisto@aps.org>
Subject: First AMS paper chosen for a ten year retrospective of PRL Editors' Suggestions
Date: April 20, 2017 at 4:49:57 PM GMT+2

Since we began Editors’ Suggestions 10 years ago, we have published about 3000 PRLs marked as 
an Editors’ Suggestion. 
To mark the 10 year anniversary, each week we are posting a placard (like the one I sent you--a link 
to the paper and a brief description) on our website for one of those papers. So we are picking just 
52 out of the 3000 possible candidates (and each candidate was of course already a PRL paper we 
chose to highlight). Other papers we have already commemorated in this way include the 
discovery of element 117, and the observation of gravitational waves by LIGO.

Cheers,
Robert 61
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The physics of AMS to 2024:
1. Positrons and Dark Matter

2. Anisotropy and Dark Matter

3. Anti-deuterons and Dark Matter

4. Study solar physics of p, He, C, O, …

5. Study high Z cosmic rays to the highest energies

6. Unexpected

AMS
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AMS 2024

The Positron Flux through 2024 
Extend the measurements to 2 TeV and double the current statistics 

to determine the sharpness of the drop off. 

Collision of Cosmic Rays

1.2 TeV
Dark Matter 
+ Collision of 
Cosmic Rays

By 2024, AMS will have a definitive result on the dark 
matter origin of positrons
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The physics of AMS to 2024:

3. Anti-deuterons and Dark Matter

By 2024, AMS will have collected more than 200 million deuterons.

Dark Matter annihilation will produce anti-Deuterons

Anti-Deuterons have never been observed in space
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The physics of AMS to 2024:
By 2024, AMS will provide an accurate study of the time-variation 

of nuclei fluxes on a daily basis over a complete solar cycle.
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The physics of AMS to 2024:
5. Study high Z cosmic rays
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AMS has seven instruments which 
independently measure Cosmic Nuclei

Tracker Plane 1

TRD

Upper TOF

Tracker Plane 2-8

Lower TOF

RICH

Tracker Plane 9



Z=9 to Z=16 Z=17 to Z=28

Darker shading shows events collected to date

AMS - Expected events to 2024 

68



V. The lightest elements created by supernova are Nickel and Zinc.  AMS 
will be able to study their properties for the first time and compare 
them with elements produced by stellar nucleosynthesis.

Ni
70K

Zn
1K

Events with Z=28 to Z=30 through 2024
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AMS is the only magnetic spectrometer in space.
None of the AMS results were predicted.

The AMS results on Dark Matter and anti-matter are of historic 
importance.   The current and new results on cosmic rays have, and 

will continue to, change our understanding of the cosmos. 
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