November 21st 2018

Detector Simulation Working Group (DeSi-WG) EEE telescope simulation Model validation

M.Battaglieri, S.Grazzi G.Mandaglio, C.Pellegrino, S.Pisano F.Coccetti, F.Noferini, M.Ungaro

DEtector**SI**mulation-**WG**

Goal: generate pseudo data using GEANT4 to track CORSIKA generated particle

e. @lab12

DEtectorSImulation-WG

Goal: generate pseudo data using GEANT4 to track CORSIKA generated particle

DESI-WG: Activity report update

EEE-MRPC response to cosmic rays in **GEANT4**

- MRPC geometry: material, size, ...
- MRPC response (parametrized)
- Telescope response: geometry, trigger, ...
- Telescope location: effect of roof, walls, surrounding materials, ...
- Telescope: muon rates for different multiplicities

*** EEE MRPC response**

- * No avalanche simulated in details
- * Effective hit process:
 - Sample XY (and Z) muon hit on on bottom strip plane
 - Assume both strips and gaps are active
 - Apply a spread to account for multiple hits and spread position resolution X and Ynand T

***MRPC** parameters

- 90x160 active area
- Active: 2.5cm x 24 strips + 0.7cm x (24-1) gaps
- Time spread: $\sigma = 238$ ps
- Cluster size: $\sigma_X = 9.2 \text{ mm}$
- Cluster size: $\sigma_{\rm Y} = 15$ mm
- Light speed: 15.8 ns/cm
- HIT_{XY} is gaussian-spread and projected on the sensitive area to derive strip multiplicity
- *Telescope parameters
 - 3 chambers
 - -50/0/+50 cm apart
 - placed in a concrete box wall on all sides (140cm concrete)

- Multi-telescopes: coincidence rates
- Single/multiple telescope(s) studies: bottom-up muons, ...

<u>ab12</u>

EEE detector simulation

Ref: GENO-01

M.Battaglieri - INFN GE

EEE-Sim reconstruction

gemc_to_eee()

the routine reads the gemc root-file output and convert it in a root-file readable by EEE-reconstruction code (F. Noferini)

How to use EEE reconstriction for simulated data

Reconstruction @cnaf (instruction and macros by F. Noferini) you must use the following machine eee-analisi-user: 182 run the following commands:

- 1) scl enable devtoolset-6 python27 bash
- 2) source /home/eeesoft/geant4_vmc/env.sh

Yuo have to copy g4Config.C, telescopes e provasim.C from: /home/eeesoft/geant4_vmc/EEE_Analyzer/eeeroot

To run the reconstruction: eeeroot.exe -b -q -l provasim.C Interesting output: BOLO-02-2017-01-01-00001_digit.root BOLO-02-2017-01-01-00001_dst.root

digit is the input file dst is the output file, exactly formally equal to experimental data

..._digit.root

TTree name -> EventsDigits

- **seconds/I** -> trigger time in seconds
- **nanoseconds/l** -> trigger time in nanoseconds
- **type/I** -> Event Type: 0=gps, I=trigger
- **nhit** --> Numer of hit (At least 6)
- chamb[nhit]/I --> chamber number
- strip[nhit]/I --> strip number (0-23 left, 24-47 right)
- timeHit[nhit]/F --> hit time inside the trigger window (-10 ns +10 ns)
- totHit[nhit]/F --> time over threshold in ns (coud be equal to 0)

G.Mandaglio

6

Muon generation

* Single-muon generation

* Semi-sphere generation such as to obtain a flat distribution on a plane surface $\frac{1}{2}$

* Improved Gaisser parametrization for $Flux(E_{\mu,\Theta})$ to include Earth curvature (all latitudes) and low energy muons (<100GeV)

EEE detector simulation

EEE-Telescope simulation: geometry

*Telescope Parameters

- 3 chambers
- -50/0/+50 cm apart
- placed in a concrete box wall on all sides (140cm concrete)

*Individual response to cosmic muons (2-10 GeV) of the three chambers

M.Battaglieri - INFN GE

EEE detector simulation

Comparison with GENO-01

* Comparison to GENO-01 telescope

- built in March 2017 at CERN and delivered in Oct 2017
- installed at the 4th floor (4 floors above) of Dpt.Physics/INFN-GE
- Commissioned in Aug '18, data taking since Sept '18
- full control of geometry and environmental parameters
- The location and surrounding materials can be an issue

Рьот	Alarm	STATUS	Оитрит
RateHitEvents	y_values	Clean	30.54 +- 0.71
DeltaTime	exp_fit_lambda	Clean	31.81 +- 0.22
HitMultTop	x_average	Clean	1.2898 +- 0.0044
HitMultMid	x_average	Clean	1.2569 +- 0.0044
HitMultBot	x_average	Clean	1.1956 +- 0.0039
HitMultTotal	x_average	Clean	3.7390 +- 0.0093
ClusterMultTop	x_average	Clean	1.0627 +- 0.0025
ClusterMultMid	x_average	Clean	1.0925 +- 0.0029
ClusterMultBot	x_average	Clean	1.0751 +- 0.0026
ClusterMultTotal	x_average	Clean	3.2303 +- 0.0065
ChiSquare	x_average	Clean	2.188 +- 0.029
RateTrackEvents	y_values	Clean	27.62 +- 0.67
FractionTrackEvents	y_values	Clean	0.9188 +- 0.0062

S.Grazzi

EEE-Sim absolute rates

 $R_{Data} = (30.5 \pm 0.7) Hz$

Energy	fraction of the spectrum (%)
0.2 - 2 GeV	44.5
2- 10 GeV	41
10- 100 GeV	14.2
100 - 500 GeV	0.3
Tot	100

9

 $R_{Sim} = (42 \pm 4) Hz$

 R_{Sim} = (35 ± 4) Hz

 R_{Sim} = (35 ± 4) Hz

 $R_{Sim} = (35 \pm 4) Hz$

- Concrete vault thknss = 20cm
- Gen Sphere R=150cm
- Gen Sphere ΔZ =-50cm
- Concrete vault thknss = 140cm
- Gen Sphere R=150cm
- Gen Sphere ΔZ =-50cm
- Concrete vault thknss = 140cm
- Gen Sphere R=250cm
- Gen Sphere ΔZ =-50cm
- Concrete vault thknss = 140cm
- Gen Sphere R=250cm
- Gen Sphere $\Delta Z=0$ cm

Data/SIM comparison

*Sim 10% higher than data rate (absolute)
* Sim theta distribution shifted down by ~1-2°
*Good consistency with high energy muons

10

EEE detector simulation

EEE-Sim results Systematic checks for data/sim agreement

*Effect of changing data selection

• Fiducial cuts to the data: 80x150 (over 90x160)

П

• Hit selection: only | hit

No significant effect found

*Theta angular distribution compared to other telescopes (CERN) with similar results

EEE-Sim validation

* Sanity checks (rec.vs.gen):

- Energy spectrum
- Thetas
- Phi
- Phi asymmetry

EEE-Sim results

Systematic checks for data/sim agreement

*Effect of changing parameters in the microscopic parametrisation of the MRPC response

- Time spread: σ = 94ps [NIM A539 (2008) 263] 238ps [JINST13(2018)P08026]
- Cluster size: $\sigma_X = 8.4$ mm [NIM A539 (2008) 263] 9.2mm [JINST13(2018)P08026]
- Cluster size: $\sigma_{Y} = 8.4$ mm [NIM A539 (2008) 263] 15.mm [JINST13(2018)P08026]
- Light speed: 11.24ns/cm [NIM A539 (2008) 263] 15.8ns/cm [ReconstructionCode]

No significant effect found since the SIM algorithm uses only the first hit as the REC does for data

*Effect of changing the generation procedure

• Generation semi-sphere: R = [150cm-250cm]; position in Z = [centered, offset to -50cm]

No significant effect found since the SIM algorithm uses only the first hit as the REC does for data

* Surrounding material have a significant impact on absolute rate. What about the angular distribution?

***Effect of changing concrete vault**

- * Concrete vault [0cm 140cm]
- * Expected to be ~140cm
- * Best rate matching obtained for 140cm

*Better agreement if we only consider high energy muons

Systematic checks for data/sim agreement

*Effect of changing generation parameters

- Semi sphere size: R = [150cm-250cm]
- Semi sphere position: Z = [centered, offset to -50cm]

No significant effect found since the SIM algorithm uses only the first hit as the REC does for data

Simulating the environment

* the 'mountain' on one side is simulated as a block of iron with clearance and $\Delta\Theta\pm15$

17

e. 3 lab12

Confirming absolute rates using a cosmic box (ASTRO)

18

Liceo Casiraghi

- 8 scintillators bars (60x8x2 + 18x8x2)cm3
- Plastic wrapped in 200um-Gd-linen mylar
- Extruded plastic + WLS coupled to SiPMs (single side)
- FPGO readout, 3 sets of thresholds
- P,T,H + GPS signal
- All possible pairs of counters to select cosmic muons and cosmic neutrons
- Transportable
- Battery for stand-alone operations up to ~20h
- Planned test with EEE-CB ion Sardinia
- Excellent stability in time (~1%)
- Absolute rate compared to simulations shows a good matching (10%) for outside measurement
- Measure and correct for the attenuation factor (A) due to the material sourrounding EEE telescope

Pair	Data (Hz)	Sim (Hz)
LongLong	1.99 ± 0.01 Hz	2.1 ± 0.1
ShortShort	0.42 ± 0.01 Hz	0.46 ± 0.05
ShortLong	1.01 ± 0.01	0.93 ± 0.05

EEE detector simulation

Summary and future plans

- ***EEE MRPC** response implemented in GEANT4
- *EEE data reconstruction program modified to process pseudo-data
- *Simulations matches (@10%) data angular and time distribution
- *Absolute rates of single muon hits on the telescope (3 chambers) are comparable to measured rates
- *Disagreement for theta could be due to materials around the telescope
- ***Next steps:**
 - investigation of the theta discrepancy
 - use of CORSIKA to generate and propagate multi-muon hits (primary hadron in high atmosphere + shower propagation to the sea-level)
 - Sim/data for multi-telescopes correlation comparison